リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「小胞体ストレスが引き起こす細胞競合の遺伝学的解析」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

小胞体ストレスが引き起こす細胞競合の遺伝学的解析

越智, 直孝 京都大学 DOI:10.14989/doctor.k24045

2022.03.23

概要

生体内で近接する2つの細胞間で質の差が生じた際、一方の細胞が細胞死を起こして排除される現象が存在し、細胞競合と呼ばれている。排除される細胞は「敗者」、生体に残る細胞は「勝者」と呼ばれる。細胞競合は生体内に生じたがん原性の変異細胞や異常細胞を除去することで生体の恒常性維持に寄与すると考えられているが、その生理的役割や分子機構については未だ不明な点が多い。本研究ではこれらの課題を解決することを目的として、ショウジョウバエ複眼原基を用いた大規模な遺伝学的スクリーニング(約1,400変異系統のスクリーニング)を行い、細胞競合を誘発する突然変異(細胞競合のトリガー)を網羅的に探索した。スクリーニングにより得られた変異系統の全ゲノム解析および遺伝学的解析により、wollknaeuel(wol)遺伝子に機能欠損型のホモ接合変異が導入されると細胞競合が誘発される(単独では生存可能であるが野生型細胞に近接すると細胞死を起こす)ことがわかった。wolは小胞体内で糖鎖付加を介してタンパク質の正常なフォールディングを促進するグリコシルトランスフェラーゼをコードしており、複眼原基に誘導したwol変異細胞は小胞体ストレス応答を引き起こすことがわかった。ショウジョウバエにおける小胞体ストレス応答は、PKR-like ER kinase(PERK)およびInositol-requiring enzyme-1(Ire1)経路を介して起こる。申請者は、wol変異細胞内でPERKをノックダウンすると細胞競合が強く抑制されることを見いだした。PERKは小胞体ストレス時に活性化し、翻訳開始因子eIF2αのリン酸化を介して細胞内タンパク質合成をグローバルに抑制する。申請者は、このPERKによるeIF2αのリン酸化に、細胞競合の敗者細胞の排除に必須の転写因子として報告されているXrp1が重要な役割を果たすことを明らかにした。具体的には、wol変異細胞内でXrp1をノックダウンすると、eIF2αのリン酸化および細胞排除が強く抑制された。重要なことに、このXrp1-PERK-eIF2α経路は、小胞体ストレスを引き起こす種々の遺伝子変異によって誘発される細胞競合のみならず、リボソームタンパク質遺伝子変異やRNAヘリカーゼHel25E遺伝子変異によって誘発される細胞競合においても同様に敗者細胞の排除に必須の役割を果たすことがわかった。すなわち、この経路は異なるトリガーによって引き起こされる細胞競合を普遍的に駆動するものであると考えられた。本研究により、細胞競合の実行に中心的な役割を果たすXrp1-PERK-eIF2α経路が明らかになった。また、小胞体ストレスは生理的に起こりうる現象であることから、種々の要因によって引き起こされる小胞体ストレスが細胞競合の生理的トリガーの1つであることが示唆された。今後、生理的な小胞体ストレスを同定・解析することで、これまで不明であった細胞競合の生理的意義を解明できると期待される。

この論文で使われている画像

参考文献

1. Morata’ And G, Ripoll P. Minutes: Mutants of Drosophila Autonomously Affecting Cell Division Rate. DEVELOPMENTAL BIOLOGY. 1975.

2. Claire de la Cova, Mauricio Abril, Paola Bellosta, Peter Gallant, Laura A Johnston. Drosophila Myc Regulates Organ Size by Inducing Cell Competition. 2004. Available: www.cell.com/cgi/content/full/117/1/107/DC1

3. Moreno E, Basler K. dMyc Transforms Cells into Super-Competitors developing tissue remains unchanged and no morpho. Cell. 2004.

4. Tyler DM, Li W, Zhuo N, Pellock B, Baker NE. Genes affecting cell competition in drosophila. Genetics. 2007;175: 643–657. doi:10.1534/genetics.106.061929

5. Rodrigues AB, Zoranovic T, Ayala-Camargo A, Grewal S, Reyes-Robles T, Krasny M, et al. Activated STAT regulates growth and induces competitive interactions independently of Myc, Yorkie, Wingless and ribosome biogenesis. Development (Cambridge). 2012;139: 4051–4061. doi:10.1242/dev.076760

6. Igaki T, Pastor-Pareja JC, Aonuma H, Miura M, Xu T. Intrinsic Tumor Suppression and Epithelial Maintenance by Endocytic Activation of Eiger/TNF Signaling in Drosophila. Developmental Cell. 2009;16: 458–465. doi:10.1016/j.devcel.2009.01.002

7. Anthony M. Brumby, Helena E. Richardson. scribble mutants cooperate with oncogenic Ras or Notch to cause neoplastic overgrowth in Drosophila. EMBO J. 2003.

8. Tamori Y, Bialucha CU, Tian AG, Kajita M, Huang YC, Norman M, et al. Involvement of Lgl and mahjong/VprBP in cell competition. PLoS Biology. 2010;8. doi:10.1371/journal.pbio.1000422

9. Nagata R, Nakamura M, Sanaki Y, Igaki T. Cell Competition Is Driven by Autophagy. Developmental Cell. 2019;51: 99-112.e4. doi:10.1016/j.devcel.2019.08.018

10. Enomoto M, Igaki T. Src controls tumorigenesis via JNK-dependent regulation of the Hippo pathway in Drosophila. EMBO Reports. 2013;14: 65–72. doi:10.1038/embor.2012.185

11. Yamamoto M, Ohsawa S, Kunimasa K, Igaki T. The ligand Sas and its receptor PTP10D drive tumour-suppressive cell competition. Nature. 2017;542: 246–250. doi:10.1038/nature21033

12. Katsukawa M, Ohsawa S, Zhang L, Yan Y, Igaki T. Serpin Facilitates Tumor- Suppressive Cell Competition by Blocking Toll-Mediated Yki Activation in Drosophila. Current Biology. 2018;28: 1756-1767.e6. doi:10.1016/j.cub.2018.04.022

13. Sanaki Y, Nagata R, Kizawa D, Léopold P, Igaki T. Hyperinsulinemia Drives Epithelial Tumorigenesis by Abrogating Cell Competition. Developmental Cell. 2020;53: 379-389.e5. doi:10.1016/j.devcel.2020.04.008

14. Vaughen J, Igaki T. Slit-Robo Repulsive Signaling Extrudes Tumorigenic Cells from Epithelia. Developmental Cell. 2016;39: 683–695. doi:10.1016/j.devcel.2016.11.015

15. Baker NE. Emerging mechanisms of cell competition. Nature Reviews Genetics. Nature Research; 2020. pp. 683–697. doi:10.1038/s41576-020-0262-8

16. Nagata R, Igaki T. Cell competition: Emerging mechanisms to eliminate neighbors. Development Growth and Differentiation. Blackwell Publishing; 2018. pp. 522–530. doi:10.1111/dgd.12575

17. Baumgartner ME, Dinan MP, Langton PF, Kucinski I, Piddini E. Proteotoxic stress is a driver of the loser status and cell competition. Nature Cell Biology. 2021;23: 136–146. doi:10.1038/s41556-020-00627-0

18. Kucinski I, Dinan M, Kolahgar G, Piddini E. Chronic activation of JNK JAK/STAT and oxidative stress signalling causes the loser cell status. Nature Communications. 2017;8. doi:10.1038/s41467-017-00145-y

19. Moreno E, Basler K, Morata G. Cells compete for Decapentaplegic survival factor to prevent apoptosis in Drosophila wing development. 2002. Available: www.nature.com

20. Tanji T, Hu X, Weber ANR, Ip YT. Toll and IMD Pathways Synergistically Activate an Innate Immune Response in Drosophila melanogaster . Molecular and Cellular Biology. 2007;27: 4578–4588. doi:10.1128/mcb.01814-06

21. R S Khush, F Leulier, B Lemaitre. Drosophila immunity two paths to NF-kappaB. 2001. Available: http://immunology.trends.com

22. Alpar L, Bergantiños C, Johnston LA. Spatially Restricted Regulation of Spätzle/Toll Signaling during Cell Competition. Developmental Cell. 2018;46: 706-719.e5. doi:10.1016/j.devcel.2018.08.001

23. Meyer SN, Amoyel M, Bergantiños † C, de La Cova C, Schertel C, Basler K, et al. An ancient defense system eliminates unfit cells from developing tissues during cell competition. 2014. Available: https://www.science.org

24. Merino MM, Rhiner C, Lopez-Gay JM, Buechel D, Hauert B, Moreno E. Elimination of unfit cells maintains tissue health and prolongs lifespan. Cell. 2015;160: 461–476. doi:10.1016/j.cell.2014.12.017

25. Rhiner C, López-Gay JM, Soldini D, Casas-Tinto S, Martín FA, Lombardía L, et al. Flower forms an extracellular code that reveals the fitness of a cell to its neighbors in Drosophila. Developmental Cell. 2010;18: 985–998. doi:10.1016/j.devcel.2010.05.010

26. Recasens-Alvarez C, Alexandre C, Kirkpatrick J, Nojima H, Huels DJ, Snijders AP, et al. Ribosomopathy-associated mutations cause proteotoxic stress that is alleviated by TOR inhibition. Nature Cell Biology. 2021;23: 127–135. doi:10.1038/s41556-020-00626-1

27. Baillon L, Germani F, Rockel C, Hilchenbach J, Basler K. Xrp1 is a transcription factor required for cell competition-driven elimination of loser cells. Scientific Reports. 2018;8. doi:10.1038/s41598-018-36277-4

28. Kale A, Ji Z, Kiparaki M, Blanco J, Rimesso G, Flibotte S, et al. Ribosomal Protein S12e Has a Distinct Function in Cell Competition. Developmental Cell. 2018;44: 42-55.e4. doi:10.1016/j.devcel.2017.12.007

29. Francis MJ, Roche S, Cho MJ, Beall E, Min B, Panganiban RP, et al. Drosophila IRBP bZIP heterodimer binds P-element DNA and affects hybrid dysgenesis. Proceedings of the National Academy of Sciences of the United States of America. 2016;113: 13003–13008. doi:10.1073/pnas.1613508113

30. Tsurui-Nishimura N, Nguyen TQ, Katsuyama T, Minami T, Furuhashi H, Oshima Y, et al. Ectopic antenna induction by overexpression of CG17836/Xrp1 encoding an AT-hook DNA binding motif protein in Drosophila. Bioscience, Biotechnology and Biochemistry. 2013;77: 339–344. doi:10.1271/bbb.120756

31. Akdemir F, Christich A, Sogame N, Chapo J, Abrams JM. p53 directs focused genomic responses in Drosophila. Oncogene. 2007;26: 5184–5193. doi:10.1038/sj.onc.1210328

32. Lee CH, Rimesso G, Reynolds DM, Cai J, Baker NE. Whole-genome sequencing and iPLEX MassARRAY genotyping map an ems-induced mutation affecting cell competition in drosophila melanogaster. G3: Genes, Genomes, Genetics. 2016;6: 3207–3217. doi:10.1534/g3.116.029421

33. Lee CH, Kiparaki M, Blanco J, Folgado V, Ji Z, Kumar A, et al. A Regulatory Response to Ribosomal Protein Mutations Controls Translation, Growth, and Cell Competition. Developmental Cell. 2018;46: 456-469.e4. doi:10.1016/j.devcel.2018.07.003

34. Boulan L, Andersen D, Colombani J, Boone E, Léopold P. Inter-Organ Growth Coordination Is Mediated by the Xrp1-Dilp8 Axis in Drosophila. Developmental Cell. 2019;49: 811-818.e4. doi:10.1016/j.devcel.2019.03.016

35. Ji Z, Kiparaki M, Folgado V, Kumar A, Blanco J, Rimesso G, et al. Drosophila RpS12 controls translation, growth, and cell competition through Xrp1. PLoS Genetics. 2019;15. doi:10.1371/journal.pgen.1008513

36. Hogan C, Dupré-Crochet S, Norman M, Kajita M, Zimmermann C, Pelling AE, et al. Characterization of the interface between normal and transformed epithelial cells. Nature Cell Biology. 2009;11: 460–467. doi:10.1038/ncb1853

37. Kajita M, Hogan C, Harris AR, Dupre-Crochet S, Itasaki N, Kawakami K, et al. Interaction with surrounding normal epithelial cells influences signalling pathways and behaviour of Src-transformed cells. Journal of Cell Science. 2010;123: 171–180. doi:10.1242/jcs.057976

38. Tanimura N, Fujita Y. Epithelial defense against cancer (EDAC). Seminars in Cancer Biology. Academic Press; 2020. pp. 44–48. doi:10.1016/j.semcancer.2019.05.011

39. Madan E, Pelham CJ, Nagane M, Parker TM, Canas-Marques R, Fazio K, et al. Flower isoforms promote competitive growth in cancer. Nature. 2019;572: 260–264. doi:10.1038/s41586-019-1429-3

40. Clavería C, Giovinazzo G, Sierra R, Torres M. Myc-driven endogenous cell competition in the early mammalian embryo. Nature. 2013;500: 39–44. doi:10.1038/nature12389

41. Hashimoto M, Sasaki H. Epiblast Formation by TEAD-YAP-Dependent Expression of Pluripotency Factors and Competitive Elimination of Unspecified Cells. Developmental Cell. 2019;50: 139-154.e5. doi:10.1016/j.devcel.2019.05.024

42. Sancho M, Di-Gregorio A, George N, Pozzi S, Sánchez JM, Pernaute B, et al. Competitive interactions eliminate unfit embryonic stem cells at the onset of differentiation. Developmental Cell. 2013;26: 19–30. doi:10.1016/j.devcel.2013.06.012

43. Analysis of genetic mosaics in developing and adult Drosophila.

44. Luo L, Wu JS. A protocol for mosaic analysis with a repressible cell marker (Marcm) in drosophila. Nature Protocols. 2007;1: 2583–2589. doi:10.1038/nprot.2006.320

45. Haecker A, Bergman M, Neupert C, Moussian B, Luschning S, Aebi M, et al. Wollknäuel is required for embryo patterning and encodes the Drosophila ALG5 UDP-glucose: Dolichyl-phosphate glucosyltransferase. Development. 2008;135: 1745–1749. doi:10.1242/dev.020891

46. Schröder M, Kaufman RJ. ER stress and the unfolded protein response. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis. 2005. pp. 29–63. doi:10.1016/j.mrfmmm.2004.06.056

47. Kashiwagi K, Yokoyama T, Nishimoto M, Takahashi M, Sakamoto A, Yonemochi M, et al. Structural basis for eIF2B inhibition in integrated stress response. Available: https://www.science.org

48. Ryoo HD, Vasudevan D. Two distinct nodes of translational inhibition in the Integrated Stress Response. BMB Reports. The Biochemical Society of the Republic of Korea; 2017. pp. 539–545. doi:10.5483/BMBRep.2017.50.11.157

49. Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. 1998. Available: www.genesdev.org

50. Batchvarova N, Wang XZ, Ron D. Inhibition of adipogenesis by the stress-induced protein CHOP (Gadd153). EMBO Journal. 1995;14: 4654–4661. doi:10.1002/j.1460-2075.1995.tb00147.x

51. Costa-Mattioli M, Walter P. The integrated stress response: From mechanism to disease. Science (New York, N.Y.). NLM (Medline); 2020. doi:10.1126/science.aat5314

52. Oda Y, Okada T, Yoshida H, Kaufman RJ, Nagata K, Mori K. Derlin-2 and Derlin- 3 are regulated by the mammalian unfolded protein response and are required for ER-associated degradation. Journal of Cell Biology. 2006;172: 383–393. doi:10.1083/jcb.200507057

53. Olivari S, Galli C, Alanen H, Ruddock L, Molinari M. A novel stress-induced EDEM Variant regulating endoplasmic reticulum-associated glycoprotein degradation. Journal of Biological Chemistry. 2005;280: 2424–2428. doi:10.1074/jbc.C400534200

54. Chang TK, Lawrence DA, Lu M, Tan J, Harnoss JM, Marsters SA, et al. Coordination between Two Branches of the Unfolded Protein Response Determines Apoptotic Cell Fate. Molecular Cell. 2018;71: 629-636.e5. doi:10.1016/j.molcel.2018.06.038

55. Walter P, Ron D. The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation. 2011. Available: https://www.science.org

56. Ryoo HD. Drosophila as a model for unfolded protein response research. BMB Reports. The Biochemical Society of the Republic of Korea; 2015. pp. 445–453. doi:10.5483/BMBRep.2015.48.8.099

57. Ryoo HD, Domingos PM, Kang MJ, Steller H. Unfolded protein response in a Drosophila model for retinal degeneration. EMBO Journal. 2007;26: 242–252. doi:10.1038/sj.emboj.7601477

58. Wang L, Zeng X, Ryoo HD, Jasper H. Integration of UPRER and Oxidative Stress Signaling in the Control of Intestinal Stem Cell Proliferation. PLoS Genetics. 2014;10. doi:10.1371/journal.pgen.1004568

59. Blanco J, Cooper JC, Baker NE. Roles of C/EBP class bZip proteins in the growth and cell competition of Rp (‘minute’) mutants in drosophila. eLife. 2020;9. doi:10.7554/eLife.50535

60. Ochi N, Nakamura M, Nagata R, Wakasa N, Nakano R, Igaki T. Cell competition is driven by Xrp1-mediated phosphorylation of eukaryotic initiation factor 2α. PLoS Genetics. 2021;17. doi:10.1371/JOURNAL.PGEN.1009958

61. Laguesse S, Creppe C, Nedialkova DD, Prévot PP, Borgs L, Huysseune S, et al. A Dynamic Unfolded Protein Response Contributes to the Control of Cortical Neurogenesis. Developmental Cell. 2015;35: 553–567. doi:10.1016/j.devcel.2015.11.005

62. Massaeli H, Viswanathan D, Pillai DG, Mesaeli N. Endoplasmic reticulum stress enhances endocytosis in calreticulin deficient cells. Biochimica et Biophysica Acta- Molecular Cell Research. 2019;1866: 727–736. doi:10.1016/j.bbamcr.2018.12.003

63. Marianthi Kiparaki, Chaitali Khan, Virginia Folgado Marco, Jacky Chuen, Nicholas E. Baker. The transcription factor Xrp1 orchestrates both reduced translation and cell competition upon defective ribosome assembly or function. bioRxiv. 2021. doi:10.1101/2021.07.12.452023

64. Das R, Sebo Z, Pence L, Dobens LL. Drosophila tribbles antagonizes insulin signaling-mediated growth and metabolism via interactions with akt kinase. PLoS ONE. 2014;9. doi:10.1371/journal.pone.0109530

65. Mounir Z, Krishnamoorthy JL, Wang S, Papadopoulou B, Campbell S, Muller WJ, et al. Akt Determines Cell Fate Through Inhibition of the PERK-eIF2a Phosphorylation Pathway. Available: www.SCIENCESIGNALING.org

66. Langton PF, Baumgartner ME, Logeay R, Piddini E. Xrp1 and Irbp18 trigger a feed-forward loop of proteotoxic stress to induce the loser status. Perrimon N, editor. PLOS Genetics. 2021;17: e1009946. doi:10.1371/journal.pgen.1009946

67. Brown B, Mitra S, Roach FD, Vasudevan D, Don Ryoo H. The transcription factor Xrp1 is required for PERK-mediated antioxidant gene induction in Drosophila. Elife. 2021;10: 74047. doi:10.7554/eLife

68. Mori K. Signalling pathways in the unfolded protein response: Development from yeast to mammals. Journal of Biochemistry. 2009. pp. 743–750. doi:10.1093/jb/mvp166

69. Lin JH, Walter P, Yen TSB. Endoplasmic reticulum stress in disease pathogenesis. Annual Review of Pathology: Mechanisms of Disease. 2008. pp. 399–425. doi:10.1146/annurev.pathmechdis.3.121806.151434

70. Kim I, Xu W, Reed JC. Cell death and endoplasmic reticulum stress: Disease relevance and therapeutic opportunities. Nature Reviews Drug Discovery. 2008;7: 1013–1030. doi:10.1038/nrd2755

71. Mitra S, Ryoo HD. The unfolded protein response in metazoan development. Journal of Cell Science. Company of Biologists Ltd; 2019. doi:10.1242/jcs.217216

72. Costa-Rodrigues C, Couceiro J, Moreno E. Cell competition from development to neurodegeneration. DMM Disease Models and Mechanisms. Company of Biologists Ltd; 2021. doi:10.1242/dmm.048926

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る