リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Regulation of micturition reflex by neural activity in the anterior cingulate cortex」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Regulation of micturition reflex by neural activity in the anterior cingulate cortex

望月 孝規 山梨大学 DOI:info:doi/10.34429/00004866

2020.12.17

概要

【Introduction】
 Previous studies have suggested that anterior cingulate cortex (ACC) might be involved in mict urition. However, the mechanism has not been fully elucidated in comparison to pontine micturit ion center (PMC) and periaqueductal gray matter (PAG), which are the same cerebral regions found to be involved in micturition reflex. The purpose of this study is to clarify how ACC neu ronal activity contributes to the micturition reflex.

【Materials & Methods】
 1. Neuronal tracers cholera toxin subunit B (CTB) and wheat germ agglutinin (WGA) were injected into the PAG, ACC, and bladder of wild type (WT) mice to confirm the distribution of projection targets. 2. Under urethane anesthesia, WT mouse ACC was stimulated and inhibited nonselectively measuring the bladder pressure using electrical stimulation and drug administration. 3. Optogenetic selective stimulations for excitatory neurons in ACC were performed using thymus cell antigen1-channelrhodop sin-2 (Thy1ChR2) mouse and adeno-associated viruses-calcium/calmodulin-dependent kinase II- channelrhodopsin-2 (AAV-CaMK2-ChR2) with WT mouse. Furthermore, optogenetic selective stimulations for parvalbumin (PV) neurons that is one of the inhibitory neurons were performed using PV-Cre mouse with adeno-associated viruses- double-floxed inverted orientation- channelrhodopsin-2 (AAV-DIO-ChR2). 4. To map cortical regions inducing micturition reflex, Thy1ChR2 mice were used, and photostimulation at multiple sites over the cerebral cortex were performed and the changes of the bladder pressure were measured.

【Results】
 1. The presence of fluorescence was confirmed in ACC, PAG, PMC, and the bladder. 2. Non-s elective activation of ACC neural activity promoted the micturition reflex. On the other hand, no n-selective inhibition suppressed bladder contraction. 3. While selective stimulation of ACC excit atory neurons promoted the micturition reflex, photostimulation of PV neurons suppressed it. 4. Although photostimulation of the ACC excitatory neurons had a higher effect on an increase of bladder pressure, this effect was attenuated as the photostimulation point moved laterally.

【Discussion】
 The presence of a projection pathway from ACC to the bladder via PAG and PMC was confir med. In fact, manipulation of ACC neural activity had a direct effect on the micturition reflex. S pecifically, activation of ACC neural activity by nonselective stimulation facilitated the micturition reflex, while nonselective inhibition suppressed it.
 Selective stimulation using optogenetics for ACC excitatory neurons induced micturition reflex. On the other hand, selective stimulation for ACC PV neurons suppressed bladder contraction. These results showed that selective stimulation of each of the neurons with different functions i n the ACC could control the micturition reflex.
 Compared to other cortical areas, ACC neural activity has a strong effect on the micturition refl ex. It has been thought that micturition is controlled by the interaction between regions of the cerebrum, such as the PMC and PAG. However, it was found that selective activation of neuro ns with different functions in a single region, which is ACC, also controlled micturition reflex in this study.

【Conclusion】
 ACC neuronal activities play a crucial role in the initiation of micturition. The neuronal balance of excitation and inhibition in ACC could regulate micturition reflex.

この論文で使われている画像

参考文献

1. Barrington, F.J.F., The Effect of Lesions of the Hind- and Mid-Brain on Micturition in the Cat. Quarterly Journal of Experimental Physiology, 1925. 15(1): p. 81-102.

2. Mallory, B.S., J.R. Roppolo, and W.C. de Groat, Pharmacological modulation of the pontine micturition center. Brain Res, 1991. 546(2): p. 310-20.

3. Sugaya, K., et al., Electrical and chemical stimulations of the pontine micturition center. Neurosci Lett, 1987. 80(2): p. 197-201.

4. de Groat, W.C. and N. Yoshimura, Pharmacology of the lower urinary tract.Annu Rev Pharmacol Toxicol, 2001. 41: p. 691-721.

5. Sugaya, K., et al., Central nervous control of micturition and urine storage.J Smooth Muscle Res, 2005. 41(3): p. 117-32.

6. Noto, H., et al., Opioid modulation of the micturition reflex at the level of the pontine micturition center. Urol Int, 1991. 47 Suppl 1: p. 19-22.

7. Keller, J.A., et al., Voluntary urination control by brainstem neurons that relax the urethral sphincter. Nat Neurosci, 2018. 21(9): p. 1229-1238.

8. Kuipers, R., L.J. Mouton, and G. Holstege, Afferent projections to the pontine micturition center in the cat. J Comp Neurol, 2006. 494(1): p. 36- 53.

9. Mantyh, P.W., Forebrain projections to the periaqueductal gray in the monkey, with observations in the cat and rat. J Comp Neurol, 1982. 206(2):p. 146-58.

10. Zare, A., et al., The Role of the Periaqueductal Gray Matter in Lower Urinary Tract Function. Mol Neurobiol, 2019. 56(2): p. 920-934.

11. Taniguchi, N., et al., A study of micturition inducing sites in the periaqueductal gray of the mesencephalon. J Urol, 2002. 168(4 Pt 1): p. 1626-31.

12. Matsuura, S., J.W. Downie, and G.V. Allen, Micturition evoked by glutamate microinjection in the ventrolateral periaqueductal gray is mediated through Barrington's nucleus in the rat. Neuroscience, 2000. 101(4): p. 1053-61.

13. Stone, E., et al., GABAergic control of micturition within the periaqueductal grey matter of the male rat. J Physiol, 2011. 589(Pt 8): p. 2065-78.

14. Matsumoto, S., et al., Activation of mu opioid receptors in the ventrolateral periaqueductal gray inhibits reflex micturition in anesthetized rats.Neurosci Lett, 2004. 363(2): p. 116-9.

15. Fowler, C.J., D. Griffiths, and W.C. de Groat, The neural control of micturition. Nat Rev Neurosci, 2008. 9(6): p. 453-66.

16. Brittain, K.R., S.M. Peet, and C.M. Castleden, Stroke and incontinence.Stroke, 1998. 29(2): p. 524-8.

17. Kavia, R.B., R. Dasgupta, and C.J. Fowler, Functional imaging and the central control of the bladder. J Comp Neurol, 2005. 493(1): p. 27-32.

18. Andrew, J., P.W. Nathan, and N.C. Spanos, Disturbances of micturition and defaecation due to aneurysms of anterior communicating or anterior cerebral arteries. J Neurosurg, 1966. 24(1): p. 1-10.

19. Sakakibara, R., et al., Micturitional disturbance and the pontine tegmental lesion: urodynamic and MRI analyses of vascular cases. J Neurol Sci, 1996. 141(1-2): p. 105-10.

20. Sakakibara, R., et al., Micturitional disturbance after acute hemispheric stroke: analysis of the lesion site by CT and MRI. J Neurol Sci, 1996. 137(1): p. 47-56.

21. DasGupta, R., R.B. Kavia, and C.J. Fowler, Cerebral mechanisms and voiding function. BJU Int, 2007. 99(4): p. 731-4.

22. Yao, J., et al., A corticopontine circuit for initiation of urination. Nat Neurosci, 2018. 21(11): p. 1541-1550.

23. Blok, B.F., A.T. Willemsen, and G. Holstege, A PET study on brain control of micturition in humans. Brain, 1997. 120 ( Pt 1): p. 111-21.

24. Harvie, C., et al., Brain activation during the voiding phase of micturition in healthy adults: A meta-analysis of neuroimaging studies. Clin Anat, 2019. 32(1): p. 13-19.

25. Tadic, S.D., et al., Brain activity underlying impaired continence control in older women with overactive bladder. Neurourol Urodyn, 2012. 31(5): p. 652-8.

26. Kitta, T., et al., Role of the Anterior Cingulate Cortex in the Control of Micturition Reflex in a Rat Model of Parkinson's Disease. J Urol, 2016. 195(5): p. 1613-1620.

27. Arenkiel, B.R., et al., In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron, 2007. 54(2): p. 205-18.

28. Inoue, M., et al., Rational Engineering of XCaMPs, a Multicolor GECI Suite for In Vivo Imaging of Complex Brain Circuit Dynamics. Cell, 2019. 177(5):p. 1346-1360.e24.

29. Wright, C.S., Structural comparison of the two distinct sugar binding sites in wheat germ agglutinin isolectin II. J Mol Biol, 1984. 178(1): p. 91-104.

30. Kanai, A.J., Afferent mechanism in the urinary tract. Handb Exp Pharmacol, 2011(202): p. 171-205.

31. Manita, S., et al., A Top-Down Cortical Circuit for Accurate Sensory Perception. Neuron, 2015. 86(5): p. 1304-16.

32. Smith, P.P. and G.A. Kuchel, Continuous uroflow cystometry in the urethane-anesthetized mouse. Neurourol Urodyn, 2010. 29(7): p. 1344-9.

33. Ito, H., et al., Muro-Neuro-Urodynamics; a Review of the Functional Assessment of Mouse Lower Urinary Tract Function. Front Physiol, 2017. 8: p. 49.

34. Füllhase, C., et al., 121 Neuronal Control of Micturition Via Cannabinoid (Cb) Type 1 Receptors - Evaluation of a Cb1 Knockout Mouse. Journal of Urology, 2013. 189(4S).

35. Zhou, J., et al., Pharmacologic characteristics of bladder micturition function in anesthetized mice. Comp Med, 2010. 60(6): p. 436-42.

36. Yoshiyama, M., et al., Sex-related differences in activity of lower urinary tract in response to intravesical acid irritation in decerebrate unanesthetized mice. Am J Physiol Regul Integr Comp Physiol, 2008. 295(3): p. R954-60.

37. Schekutiev, G. and U.D. Schmid, Coaxial insulated bipolar electrode for monopolar and bipolar mapping of neural tissue: technical note with emphasis on the principles of intra-operative stimulation. Acta Neurochir (Wien), 1996. 138(4): p. 470-4.

38. Brasil, R.O. and J.H. Leal-Cardoso, An optically coupled power stimulus isolation unit with high voltage and fast rise time output. Braz J Med Biol Res, 1999. 32(6): p. 767-71.

39. Olsen, R.W., Picrotoxin-like channel blockers of GABAA receptors. Proc Natl Acad Sci U S A, 2006. 103(16): p. 6081-2.

40. de Groat, W.C., D. Griffiths, and N. Yoshimura, Neural control of the lower urinary tract. Compr Physiol, 2015. 5(1): p. 327-96.

41. Fukuda, H. and T. Koga, Stimulation of three areas of the primary motor cortex interrupts micturition in dogs. J Auton Nerv Syst, 1992. 38(3): p. 177-90.

42. Griffiths, D., et al., Cerebral control of the bladder in normal and urge-incontinent women. Neuroimage, 2007. 37(1): p. 1-7.

43. Matsuura, S., et al., Human brain region response to distention or cold stimulation of the bladder: a positron emission tomography study. J Urol, 2002. 168(5): p. 2035-9.

44. Mehnert, U., et al., Brain activation in response to bladder filling and simultaneous stimulation of the dorsal clitoral nerve--an fMRI study in healthy women. Neuroimage, 2008. 41(3): p. 682-9.

45. Komesu, Y.M., et al., Functional MRI of the Brain in Women with Overactive Bladder: Brain Activation During Urinary Urgency. Female Pelvic Med Reconstr Surg, 2011. 17(1): p. 50-54.

46. Hou, X.H., et al., Central Control Circuit for Context-Dependent Micturition.Cell, 2016. 167(1): p. 73-86.e12.

47. Verstegen, A.M.J., et al., Non-Crh Glutamatergic Neurons in Barrington's Nucleus Control Micturition via Glutamatergic Afferents from the Midbrain and Hypothalamus. Curr Biol, 2019. 29(17): p. 2775-2789 e7.

48. Qin, C., J. Li, and K. Tang, The Paraventricular Nucleus of the Hypothalamus: Development, Function, and Human Diseases. Endocrinology, 2018. 159(9): p. 3458-3472.

49. Schwienbacher, I., et al., Temporary inactivation of the nucleus accumbens disrupts acquisition and expression of fear-potentiated startle in rats. Brain Res, 2004. 1027(1-2): p. 87-93.

50. Ferguson, B.R. and W.J. Gao, PV Interneurons: Critical Regulators of E/I Balance for Prefrontal Cortex-Dependent Behavior and Psychiatric Disorders. Front Neural Circuits, 2018. 12: p. 37.

51. Fowler, C.J. and D.J. Griffiths, A decade of functional brain imaging applied to bladder control. Neurourol Urodyn, 2010. 29(1): p. 49-55.

52. Ito, H., et al., Probabilistic, spinally-gated control of bladder pressure and autonomous micturition by Barrington's nucleus CRH neurons. Elife, 2020. 9.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る