リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The oral bacterium Streptococcus mutans promotes tumor metastasis by inducing vascular inflammation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The oral bacterium Streptococcus mutans promotes tumor metastasis by inducing vascular inflammation

Yu, Li 北海道大学

2023.03.23

概要

Recent studies have demonstrated a relationship between oral bacteria and systemic
inflammation. Endothelial cells (ECs), which line blood vessels, control the opening and
closing of the vascular barrier and contribute to hematogenous metastasis; however,
the role of oral bacteria-­induced vascular inflammation in tumor metastasis remains
unclear. In this study, we examined the phenotypic changes in vascular ECs following Streptococcus mutans (S. mutans) stimulation in vitro and in vivo. ...

この論文で使われている画像

参考文献

actively mediate hematogenous metastasis by initiating an inflam-

1. Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global

cancer incidence and mortality in 2018: GLOBOCAN sources and

methods. Int J Cancer. 2019;144:1941-­1953.

2. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow?

Lancet. 2001;357:539-­545.

3. Coussens LM, Werb Z. Inflammation and cancer. Nature.

2002;420:860-­867.

4. DiGiacomo JW, Gilkes DM. Tumor hypoxia as an enhancer of

inflammation-­mediated metastasis: emerging therapeutic strategies. Target Oncol. 2018;13:157-­173.

5. Neufert C, Heichler C, Brabletz T, et al. Inducible mouse models

of colon cancer for the analysis of sporadic and inflammation-­

driven tumor progression and lymph node metastasis. Nat Protoc.

2021;16:61-­85.

6. Zeeshan R, Mutahir Z. Cancer metastasis -­tricks of the trade. Bosn

J Basic Med Sci. 2017;17:172-­182.

7. Tang Q, Su Z, Gu W, Rustgi AK. Mutant p53 on the path to metastasis. Trends Cancer. 2020;6:62-­73.

8. Lemos JA, Palmer SR, Zeng L, et al. The biology of Streptococcus

mutans. Microbiol Spectr. 2019;7(1):1-­7.

9. Hong SW, Baik JE, Kang SS, Yun CH, Seo DG, Han SH. Lipoteichoic

acid of Streptococcus mutans interacts with toll-­like receptor 2

through the lipid moiety for induction of inflammatory mediators in

murine macrophages. Mol Immunol. 2014;57:284-­291.

10. Kim JS, Kim KD, Na HS, et al. Tumor necrosis factor-­α and interleukin-­1β expression pathway induced by Streptococcus mutans in macrophage cell line RAW 264.7. Mol Oral Microbiol.

2012;27:149-­159.

11. Chamat-­Hedemand S, Dahl A, Østergaard L, et al. Prevalence of infective endocarditis in streptococcal bloodstream infections is dependent on streptococcal species. Circulation. 2020;142:720-­730.

12. Nomura R, Otsugu M, Hamada M, et al. Potential involvement of

Streptococcus mutans possessing collagen binding protein Cnm in

infective endocarditis. Sci Rep. 2020;10:19118.

13. Maishi N, Hida K. Tumor endothelial cells accelerate tumor metastasis. Cancer Sci. 2017;108:1921-­1926.

14. Torii C, Maishi N, Kawamoto T, et al. miRNA-­1246 in extracellular

vesicles secreted from metastatic tumor induces drug resistance in

tumor endothelial cells. Sci Rep. 2021;11:13502.

15. Cong L, Maishi N, Annan DA, et al. Inhibition of stromal biglycan

promotes normalization of the tumor microenvironment and enhances chemotherapeutic efficacy. Breast Cancer Res. 2021;23:51.

16. Annan DA, Kikuchi H, Maishi N, Hida Y, Hida K. Tumor endothelial

cell-­a biological tool for translational cancer research. Int J Mol Sci.

2020;21:3238.

17. Maishi N, Sakurai Y, Hatakeyama H, et al. Novel antiangiogenic

therapy targeting biglycan using tumor endothelial cell-­specific liposomal siRNA delivery system. Cancer Sci. 2022;113:1855-­1867.

18. Nagata E, Oho T. Invasive Streptococcus mutans induces inflammatory cytokine production in human aortic endothelial cells via regulation of intracellular toll-­like receptor 2 and nucleotide-­binding

oligomerization domain 2. Mol Oral Microbiol. 2017;32:131-­141.

19. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19:1423-­1437.

20. Maishi N, Ohba Y, Akiyama K, et al. Tumour endothelial cells in high

metastatic tumours promote metastasis via epigenetic dysregulation of biglycan. Sci Rep. 2016;6:28039.

21. Alves LA, Ganguly T, Harth-­Chú ÉN, et al. PepO is a target of the

two-­component systems VicRK and CovR required for systemic virulence of Streptococcus mutans. Virulence. 2020;11:521-­536.

22. Ohga N, Hida K, Hida Y, et al. Inhibitory effects of epigallocatechin-­3 gallate, a polyphenol in green tea, on tumor-­associated

endothelial cells and endothelial progenitor cells. Cancer Sci.

2009;100:1963-­1970.

matory response in distant organs through NF-­κB signaling.

In this study, we primarily focused on oral bacteria-­associated

inflammation in distant organs. It remains unclear whether S. mutans facilitated the process of tumor cells detaching from primary

tumors or assisted in tumor cell intravasation. In addition, oral bacteria are in the dynamic balance. Whether the periodontitis pathogen Porphyromonas gingivalis or other subsets of oral bacteria share

the same mechanism in promoting tumor metastasis remains to be

determined. Moreover, S. mutans injection induces hepatitis in the

mice (data not shown) and it remains unclear whether S. mutans also

promotes tumor metastasis to the liver.

Postoperative pneumonia frequently occurs in hospitalized patients and is intimately associated with postoperative mortality.56

Oral bacteria increase the risk of postoperative pneumonia and professional oral hygiene practices serve to minimize the risk of postoperative pneumonia in lung and esophageal cancer.57,58 Our findings

reveal a novel role of oral bacteria in promoting tumor metastasis.

They reinforce the need for professional oral hygiene management

in patients with cancer in terms of avoiding not only postoperative

pneumonia but also tumor metastasis.

AC K N OW L E D G M E N T S

We would like to thank Dr. Y. Umeyama, Dr. MA. Towfik, Ms. M.

Sasaki, and Ms. Y. Suzuki for their technical assistance with the

experiments.

F U N D I N G I N FO R M AT I O N

This research was supported by JSPS Grants-­in-­Aid for Scientific

Research to NM (JP18K09715), YH (JP18H02891) and KH

(JP18H02996), Grants from the Japan Agency for Medical Research

and Development (AMED) to NM (JP18ck0106198h0003) and KH

(JP19ck0106406h0002), JST SPRING (JPMJSP2119).

C O N FL I C T O F I N T E R E S T

The authors declare no conflicts of interest. KH is a current Editorial

Board member of Cancer Science.

E T H I C S S TAT E M E N T

Approval of the research protocol by an Institutional Reviewer

Board: N/A.

Informed Consent: N/A.

Registry and the Registration No. of the study/trial: N/A.

Animal Studies: All animal experiments were approved by the

animal research authorities of Hokkaido University. The authors

followed the Animal Research: Reporting of In Vivo Experiments

(ARRIVE) guidelines for animal studies.

ORCID

Li Yu https://orcid.org/0000-0002-5874-055X

Yasuhiro Hida Kyoko Hida https://orcid.org/0000-0003-1759-4215

https://orcid.org/0000-0002-7968-6062

13497006, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/cas.15538 by Hokkaido University, Wiley Online Library on [20/10/2022]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

14 23. Tsumita T, Maishi N, Annan DA, et al. The oxidized-­LDL/LOX-­1 axis

in tumor endothelial cells enhances metastasis by recruiting neutrophils and cancer cells. Int J Cancer. 2022;151:944-­956.

24. Kurosu T, Ohga N, Hida Y, et al. HuR keeps an angiogenic switch on

by stabilising mRNA of VEGF and COX-­2 in tumour endothelium. Br

J Cancer. 2011;104:819-­829.

25. van der Helm MW, Odijk M, Frimat JP, et al. Direct quantification

of transendothelial electrical resistance in organs-­on-­chips. Biosens

Bioelectron. 2016;85:924-­929.

26. Boerner DF, Zwadyk P. The value of the sputum gram's stain in

community-­acquired pneumonia. Jama. 1982;247:642-­6 45.

27. Collins JP, Westblade LF, Anderson EJ. Gram-­positive diplococci in a cerebrospinal fluid gram stain. Open Forum Infect Dis.

2016;3:ofw206.

28. Yang L, Froio RM, Sciuto TE, Dvorak AM, Alon R, Luscinskas FW.

ICAM-­1 regulates neutrophil adhesion and transcellular migration

of TNF-­alpha-­activated vascular endothelium under flow. Blood.

2005;106:584-­592.

29. Azzi S, Hebda JK, Gavard J. Vascular permeability and drug delivery

in cancers. Front Oncol. 2013;3:211.

3 0. Russo AJ, Vasudevan SO, Méndez-­Huergo SP, et al. Intracellular

immune sensing promotes inflammation via gasdermin D-­driven

release of a lectin alarmin. Nat Immunol. 2021;22:154-­165.

31. Irie-­Sasaki J, Sasaki T, Matsumoto W, et al. CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature.

2001;409:349-­354.

32. Kesavalu L, Lucas AR, Verma RK, et al. Increased atherogenesis

during Streptococcus mutans infection in ApoE-­null mice. J Dent Res.

2012;91:255-­260.

33. Otsugu M, Nomura R, Matayoshi S, Teramoto N, Nakano K.

Contribution of Streptococcus mutans strains with collagen-­binding

proteins in the presence of serum to the pathogenesis of infective

endocarditis. Infect Immun. 2017;85:e00401-­17.

3 4. Sconyers JR, Crawford JJ, Moriarty JD. Relationship of bacteremia

to toothbrushing in patients with periodontitis. J Am Dent Assoc.

1973;87:616-­622.

35. Nagata E, de Toledo A, Oho T. Invasion of human aortic endothelial

cells by oral viridans group streptococci and induction of inflammatory cytokine production. Mol Oral Microbiol. 2011;26:78-­8 8.

36. Hu Z, Chen J, Zhou S, et al. Mouse IP-­10 gene delivered by folate-­

modified chitosan nanoparticles and dendritic/tumor cells fusion

vaccine effectively inhibit the growth of hepatocellular carcinoma

in mice. Theranostics. 2017;7:1942-­1952.

37. O'Hayre M, Salanga CL, Handel TM, Allen SJ. Chemokines and cancer: migration, intracellular signalling and intercellular communication in the microenvironment. Biochem J. 2008;409:635-­6 49.

38. Laheij AM, de Soet JJ, Veerman EC, Bolscher JG, van Loveren C.

The influence of oral bacteria on epithelial cell migration in vitro.

Mediators Inflamm. 2013;2013:154532.

39. Haverman TM, Laheij A, de Soet JJ, de Lange J, Rozema FR. Candida

and Porphyromonas gingivalis: the effect on wound closure in vitro.

J Oral Microbiol. 2017;9:1328266.

4 0. Kotteas EA, Boulas P, Gkiozos I, Tsagkouli S, Tsoukalas G, Syrigos

KN. The intercellular cell adhesion molecule-­1 (icam-­1) in lung cancer: implications for disease progression and prognosis. Anticancer

Res. 2014;34:4665-­4672.

41. Benedicto A, Herrero A, Romayor I, et al. Liver sinusoidal endothelial cell ICAM-­1 mediated tumor/endothelial crosstalk drives the

development of liver metastasis by initiating inflammatory and angiogenic responses. Sci Rep. 2019;9:13111.

42. Läubli H, Borsig L. Altered cell adhesion and glycosylation promote cancer immune suppression and metastasis. Front Immunol.

2019;10:2120.

43. Rho SS, Ando K, Fukuhara S. Dynamic regulation of vascular permeability by vascular endothelial cadherin-­mediated endothelial

cell-­cell junctions. J Nippon Med Sch. 2017;84:148-­159.

4 4. Golovkine G, Faudry E, Bouillot S, Voulhoux R, Attrée I, Huber P.

VE-­c adherin cleavage by LasB protease from Pseudomonas aeruginosa facilitates type III secretion system toxicity in endothelial

cells. PLoS Pathog. 2014;10:e1003939.

45. Sukumaran SK, Prasadarao NV. Escherichia coli K1 invasion increases human brain microvascular endothelial cell monolayer permeability by disassembling vascular-­endothelial cadherins at tight

junctions. J Infect Dis. 2003;188:1295-­1309.

46. Yang YM, Kim SY, Seki E. Inflammation and liver cancer: molecular mechanisms and therapeutic targets. Semin Liver Dis.

2019;39:26-­42.

47. Suarez-­C armona M, Lesage J, Cataldo D, Gilles C. EMT and inflammation: inseparable actors of cancer progression. Mol Oncol.

2017;11:805-­823.

48. Li L, Yu R, Cai T, et al. Effects of immune cells and cytokines on

inflammation and immunosuppression in the tumor microenvironment. Int Immunopharmacol. 2020;88:106939.

49. Kikuchi H, Maishi N, Annan DA, et al. Chemotherapy-­induced IL8

upregulates MDR1/ABCB1 in tumor blood vessels and results in

unfavorable outcome. Cancer Res. 2020;80:2996-­3 008.

50. Grivennikov SI, Karin M. Dangerous liaisons: STAT3 and NF-­kappaB

collaboration and crosstalk in cancer. Cytokine Growth Factor Rev.

2010;21:11-­19.

51. Greten FR, Grivennikov SI. Inflammation and cancer: triggers,

mechanisms, and consequences. Immunity. 2019;51:27-­41.

52. Sánchez-­Alcoholado L, Ordóñez R, Otero A, et al. Gut microbiota-­

mediated inflammation and gut permeability in patients with obesity and colorectal cancer. Int J Mol Sci. 2020;21:6782.

53. Cani PD, Jordan BF. Gut microbiota-­mediated inflammation in

obesity: a link with gastrointestinal cancer. Nat Rev Gastroenterol

Hepatol. 2018;15:671-­682.

54. Bertocchi A, Carloni S, Ravenda PS, et al. Gut vascular barrier impairment leads to intestinal bacteria dissemination and colorectal

cancer metastasis to liver. Cancer Cell. 2021;39:708-­724.e711.

55. Nejman D, Livyatan I, Fuks G, et al. The human tumor microbiome

is composed of tumor type-­specific intracellular bacteria. Science.

2020;368:973-­980.

56. Soutome S, Yanamoto S, Funahara M, et al. Preventive effect on

post-­operative pneumonia of Oral health care among patients who

undergo esophageal resection: a multi-­center retrospective study.

Surg Infect (Larchmt). 2016;17:479-­484.

57. Jia C, Sun M, Wang W, Li C, Li X, Zhang X. Effect of oral plaque

control on postoperative pneumonia following lung cancer surgery.

Thorac Cancer. 2020;11:1655-­1660.

58. Ishikawa S, Yamamori I, Takamori S, et al. Evaluation of effects of

perioperative oral care intervention on hospitalization stay and

postoperative infection in patients undergoing lung cancer intervention. Support Care Cancer. 2021;29:135-­143.

S U P P O R T I N G I N FO R M AT I O N

Additional supporting information can be found online in the

Supporting Information section at the end of this article.

How to cite this article: Yu L, Maishi N, Akahori E, et al.

The oral bacterium Streptococcus mutans promotes tumor

metastasis by inducing vascular inflammation. Cancer Sci.

2022;00:1-15. doi: 10.1111/cas.15538

13497006, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/cas.15538 by Hokkaido University, Wiley Online Library on [20/10/2022]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

15

YU et al.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る