リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Dynein-2–driven intraciliary retrograde trafficking indirectly requires multiple interactions of IFT54 in the IFT-B complex with the dynein-2 complex」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Dynein-2–driven intraciliary retrograde trafficking indirectly requires multiple interactions of IFT54 in the IFT-B complex with the dynein-2 complex

Hiyamizu, Shunya Qiu, Hantian Tsurumi, Yuta Hamada, Yuki Katoh, Yohei Nakayama, Kazuhisa 京都大学 DOI:10.1242/bio.059976

2023.07

概要

Within cilia, the dynein-2 complex needs to be transported as an anterograde cargo to achieve its role as a motor to drive retrograde trafficking of the intraflagellar transport (IFT) machinery containing IFT-A and IFT-B complexes. We previously showed that interactions of WDR60 and the DYNC2H1-DYNC2LI1 dimer of dynein-2 with multiple IFT-B subunits, including IFT54, are required for the trafficking of dynein-2 as an IFT cargo. However, specific deletion of the IFT54-binding site from WDR60 demonstrated only a minor effect on dynein-2 trafficking and function. We here show that the C-terminal coiled-coil region of IFT54, which participates in its interaction with the DYNC2H1-DYNC2LI1 dimer of dynein-2 and with IFT20 of the IFT-B complex, is essential for IFT-B function, and suggest that the IFT54 middle linker region between the N-terminal WDR60-binding region and the C-terminal coiled-coil is required for ciliary retrograde trafficking, probably by mediating the effective binding of IFT-B to the dynein-2 complex, and thereby ensuring dynein-2 loading onto the anterograde IFT trains. The results presented here agree with the notion predicted from the previous structural models that the dynein-2 loading onto the anterograde IFT train relies on intricate, multivalent interactions between the dynein-2 and IFT-B complexes.

この論文で使われている画像

参考文献

Anvarian, Z., Mykytyn, K., Mukhopadhyay, S., Pedersen, L. B. and

Christensen, S. T. (2019). Cellular signaling by primary cilia in development,

organ function and disease. Nat. Rev. Nephrol. 15, 199-219. doi:10.1038/s41581019-0116-9

Beales, P. L., Bland, E., Tobin, J. L., Bacchelli, C., Tuysuz, B., Hill, J., Rix, S.,

Pearson, C. G., Kai, M., Hartley, J. et al. (2007). IFT80, which encodes a

conserved intraflagellar transport protein, is mutated in Jeune asphyxiating

thoracic dystrophy. Nat. Genet. 39, 727-729. doi:10.1038/ng2038

Bizet, A. A., Becker-Heck, A., Ryan, R., Weber, K., Filhol, E., Krug, P.,

Halbritter, J., Delous, M., Lasbennes, M. C., Linghu, B. et al. (2015). Mutations

in TRAF3IP1/IFT54 reveal a new role for IFT proteins in microtubule stabilization.

Nat. Commun. 6, 8666. doi:10.1038/ncomms9666

Boldt, K., van Reeuwijk, J., Lu, Q., Koutroumpas, K., Nguyen, T. M., Texier, Y.,

van Beersum, S. E. C., Horn, N., Willer, J. R., Mans, D. et al. (2016). An

organelle-specific protein landscape identifies novel diseases and molecular

mechanisms. Nat. Commun. 7, 11491. doi:10.1038/ncomms11491

Braun, D. A. and Hildebrandt, F. (2017). Ciliopathies. Cold Spring Harb. Perspect.

Biol. 9, a028191. doi:10.1101/cshperspect.a028191

Funabashi, T., Katoh, Y., Okazaki, M., Sugawa, M. and Nakayama, K. (2018).

Interaction of heterotrimeric kinesin-II with IFT-B-connecting tetramer is crucial for

ciliogenesis. J. Cell Biol. 217, 2867-2876. doi:10.1083/jcb.201801039

Garcia-Gonzalo, F. R. and Reiter, J. F. (2017). Open sesame: how transition fibers

and the transition zone control ciliary composition. Cold Spring Harb. Perspect.

Biol. 9, a028134. doi:10.1101/cshperspect.a028134

Haeussler, M., Schö nig, K., Eckert, H., Eschstruth, A., Mianné , J., Renaud, J. B.,

Schneider-Maunoury, S., Shkumatava, A., Teboul, L., Kent, J. et al. (2016).

Evaluation of off-target and on-target scoring algorithms and integration into the

guide RNA selection tool CRISPOR. Genome Biol. 17, 148. doi:10.1186/s13059016-1012-2

Biology Open (2023) 12, bio059976. doi:10.1242/bio.059976

Halbritter, J., Bizet, A. A., Schmidts, M., Porath, J. D., Braun, D. A., Gee, H. Y.,

McInerney-Leo, A. M., Krug, P., Filhol, E., Davis, E. E. et al. (2013). Defects in

the IFT-B component IFT172 cause Jeune and Mainzer-Saldino syndromes in

humans. Am. J. Hum. Genet. 93, 915-925. doi:10.1016/j.ajhg.2013.09.012

Hamada, Y., Tsurumi, Y., Nozaki, S., Katoh, Y. and Nakayama, K. (2018).

Interaction of WDR60 intermediate chain with TCTEX1D2 light chain of the

dynein-2 complex is crucial for ciliary protein trafficking. Mol. Biol. Cell 29,

1628-1639. doi:10.1091/mbc.E18-03-0173

Hirano, T., Katoh, Y. and Nakayama, K. (2017). Intraflagellar transport-A complex

mediates ciliary entry and retrograde trafficking of ciliary G protein-coupled

receptors. Mol. Biol. Cell 28, 429-439. doi:10.1091/mbc.e16-11-0813

Hirano, M., Ando, R., Shimozono, S., Sugiyama, M., Takeda, N., Kurokawa, H.,

Deguchi, R., Endo, K., Haga, K., Takai-Todaka, R. et al. (2022). A highly

photostable and bright green fluorescent protein. Nat. Biotechnol. 40, 1132-1142.

doi:10.1038/s41587-022-01278-2

Hiyamizu, S., Qiu, H., Vuolo, L., Stevenson, N., Shak, C., Heesom, K. J.,

Hamada, Y., Tsurumi, Y., Chiba, S., Katoh, Y. et al. (2023). Multiple interactions

of the dynein-2 complex with the IFT-B complex are required for effective

intraflagellar transport. J. Cell Sci. 136, jcs260462. doi:10.1242/jcs.260462

Ishida, Y., Kobayashi, T., Chiba, S., Katoh, Y. and Nakayama, K. (2021).

Molecular basis of ciliary defects caused by compound heterozygous IFT144/

WDR19 mutations found in cranioectodermal dysplasia. Hum. Mol. Genet. 30,

213-225. doi:10.1093/hmg/ddab034

Ishida, Y., Tasaki, K., Katoh, Y. and Nakayama, K. (2022). Molecular basis

underlying the ciliary defects caused by IFT52 variations found in skeletal

ciliopathies. Mol. Biol. Cell 33, ar83. doi:10.1091/mbc.E22-05-0188

Jordan, M. A. and Pigino, G. (2021). The structural basis of intraflagellar transport

at a glance. J. Cell Sci. 134, jcs247163. doi:10.1242/jcs.247163

Jordan, M. A., Diener, D. R., Stepanek, L. and Pigino, G. (2018). The cryo-EM

structure of intraflagellar transport trains reveals how dynein is inactivated to

ensure unidirectional anterograde movement in cilia. Nat. Cell Biol. 20,

1250-1255. doi:10.1038/s41556-018-0213-1

Katoh, Y., Nozaki, S., Hartanto, D., Miyano, R. and Nakayama, K. (2015).

Architectures of multisubunit complexes revealed by a visible immunoprecipitation

assay using fluorescent fusion proteins. J. Cell Sci. 128, 2351-2362. doi:10.1242/

jcs.168740

Katoh, Y., Terada, M., Nishijima, Y., Takei, R., Nozaki, S., Hamada, H. and

Nakayama, K. (2016). Overall architecture of the intraflagellar transport (IFT)-B

complex containing Cluap1/IFT38 as an essential component of the IFT-B

peripheral subcomplex. J. Biol. Chem. 291, 10962-10975. doi:10.1074/jbc.M116.

713883

Katoh, Y., Michisaka, S., Nozaki, S., Funabashi, T., Hirano, T., Takei, R. and

Nakayama, K. (2017). Practical method for targeted disruption of cilia-related

genes by using CRISPR/Cas9-mediated homology-independent knock-in

system. Mol. Biol. Cell 28, 898-906. doi:10.1091/mbc.e17-01-0051

Kopinke, D., Norris, A. M. and Mukhopadhyay, S. (2021). Developmental and

regenerative paradigms of cilia regulated hedgehog signaling. Sem. Cell Dev.

Biol. 110, 89-103. doi:10.1016/j.semcdb.2020.05.029

Kozminski, K. G., Johnson, K. A., Forscher, P. and Rosenbaum, J. L. (1993).

A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc. Natl.

Acad. Sci. USA 90, 5519-5523. doi:10.1073/pnas.90.12.5519

Kozminski, K. G., Beech, P. L. and Rosenbaum, J. L. (1995). The

Chlamydomonas kinesin-like protein FLA10 is involved in motility associated

with the flagellar membrane. J. Cell Biol. 131, 1517-1527. doi:10.1083/jcb.131.6.

1517

Lacey, S. E., Foster, H. E. and Pigino, G. (2023). The molecular structure of IFT-A

and IFT-B in anterograde intraflagellar transport trains. Nat. Struct. Mol. Biol. 30,

584-593. doi:10.1038/s41594-022-00905-5

McInerney-Leo, A. M., Harris, J. E., Marshall, M. S., Gardiner, B., Kinning, E.,

Leong, H. Y., McKenzie, F., Ong, W. P., Vodopiutz, J., Wicking, C. et al. (2015).

Whole exome sequencing is an efficient, sensitive and specific method for

determining the genetic cause of short-rib thoracic dystrophies. Clin. Genet. 88,

550-557. doi:10.1111/cge.12550

Nachury, M. V. and Mick, D. U. (2019). Establishing and regulating the composition

of cilia for signal transduction. Nat. Rev. Mol. Cell Biol. 20, 389-405. doi:10.1038/

s41580-019-0116-4

Nakayama, K. and Katoh, Y. (2020). Architecture of the IFT ciliary trafficking

machinery and interplay between its components. Crit. Rev. Biochem. Mol. Biol.

55, 179-196. doi:10.1080/10409238.2020.1768206

Omori, Y., Zhao, C., Saras, A., Mukhopadhyay, S., Kim, W., Furukawa, T.,

Sengupta, P., Veraksa, A. and Malicki, J. (2008). elipsa is an early determinant

of ciliogenesis that links the IFT particle to membrane-associated small GTPase

Rab8. Nat. Cell Biol. 10, 437-444. doi:10.1038/ncb1706

Petriman, N. A., Loureiro-Ló pez, M., Taschner, M., Zacharia, N. K.,

Georgieva, M. M., Boegholm, N., Wang, J., Mourao,

̃ A., Russell, R. B.,

Andersen, J. S. et al. (2022). Biochemically validated structural model of the 15subunit IFT-B complex. EMBO J. 41, e112440. doi:10.15252/embj.2022112440

Prevo, B., Scholey, J. M. and Peterman, E. J. G. (2017). Intraflagellar transport:

mechanisms of motor action, cooperation, and cargo delivery. FEBS J. 284,

2905-2931. doi:10.1111/febs.14068

10

Biology Open

RESEARCH ARTICLE

Qiu, H., Tsurumi, Y., Katoh, Y. and Nakayama, K. (2022). Combinations of deletion

and missense variations of the dynein-2 DYNC2LI1 subunit found in skeletal

ciliopathies cause ciliary defects. Sci. Rep. 12, 31. doi:10.1038/s41598-02103950-0

Reiter, J. F. and Leroux, M. R. (2017). Genes and molecular pathways

underpinning ciliopathies. Nat. Rev. Mol. Cell Biol. 18, 533-547. doi:10.1038/

nrm.2017.60

Rosenbaum, J. L. and Witman, G. B. (2002). Intraflagellar transport. Nat. Rev. Mol.

Cell Biol. 3, 813-825. doi:10.1038/nrm952

Schmidts, M. (2014). Clinical genetics and pathobiology of ciliary

chondrodysplasias. J. Pediatr. Genet. 3, 49-64.

Shak, C., Vuolo, L., Uddin, B., Katoh, Y., Brown, T., Mukhopadhyay, A. G.,

Heesom, K., Roberts, A. J., Stevenson, N., Nakayama, K. et al. (2023).

Disease-associated mutations in WDR34 lead to diverse impacts on the assembly

and function of dynein-2. J. Cell Sci. 136, jcs260073. doi:10.1242/jcs.260073

Takahara, M., Katoh, Y., Nakamura, K., Hirano, T., Sugawa, M., Tsurumi, Y. and

Nakayama, K. (2018). Ciliopathy-associated mutations of IFT122 impair ciliary

protein trafficking but not ciliogenesis. Hum. Mol. Genet. 27, 516-528. doi:10.

1093/hmg/ddx421

Takahashi, S., Kubo, K., Waguri, S., Yabashi, A., Shin, H.-W., Katoh, Y. and

Nakayama, K. (2012). Rab11 regulates exocytosis of recycling vesicles at the

plasma membrane. J. Cell Sci. 125, 4049-4057.

Taschner, M. and Lorentzen, E. (2016). The intraflagellar transport machinery.

Cold Spring Harb. Perspect. Biol. 8, a028092. doi:10.1101/cshperspect.a028092

Taschner, M., Weber, K., Mourao,

̃ A., Vetter, M., Awasthi, M., Stiegler, M.,

Bhogaraju, S. and Lorentzen, E. (2016). Intraflagellar transport proteins 172, 80,

57, 54, 38, and 20 form a stable tubulin-binding IFT-B2 complex. EMBO J. 35,

773-790. doi:10.15252/embj.201593164

Taylor, S. P., Dantas, T. J., Duran, I., Wu, S., Lachman, R. S., University of

Washington Center for Mendelian Genomics Consortium, Nelson, S. F.,

Cohn, D. H., Vallee, R. B. and Krakow, D. (2015). Mutations in DYNC2LI1 disrupt

cilia function and cause short rib polydactyly syndrome. Nat. Commun. 6, 7092.

doi:10.1038/ncomms8092

Thomas, S., Ritter, B., Verbich, D., Sanson, C., Bourbonnière, L.,

McKinney, R. A. and McPherson, P. S. (2009). Intersectin regulates dendritic

spine development and somatodendritic endocytosis but not synaptic vesicle

recycling in hippocampal neurons. J. Biol. Chem. 284, 12410-12419. doi:10.1074/

jbc.M809746200

Biology Open (2023) 12, bio059976. doi:10.1242/bio.059976

Toropova, K., Mladenov, K. and Roberts, A. J. (2017). Intraflagellar transport

dynein is autoinhibited by trapping of its mechanical and track-binding elements.

Nat. Struct. Mol. Biol. 24, 461-468. doi:10.1038/nsmb.3391

Toropova, K., Zalyte, R., Mukhopadhyay, A. G., Mladenov, M., Carter, A. P. and

Roberts, A. J. (2019). Structure of the dynein-2 complex and its assembly with

intraflagellar transport trains. Nat. Struct. Mol. Biol. 26, 823-829. doi:10.1038/

s41594-019-0286-y

Tsurumi, Y., Hamada, Y., Katoh, Y. and Nakayama, K. (2019). Interactions of the

dynein-2 intermediate chain WDR34 with the light chains are required for ciliary

retrograde protein trafficking. Mol. Biol. Cell 30, 658-670. doi:10.1091/mbc.E1810-0678

van den Hoek, H., Klena, N., Jordan, M. A., Viar, G. A., Righetto, R. D.,

Schaffer, M., Erdmann, P. S., Wan, W., Geimer, S., Plitzko, J. M. et al. (2022). In

situ architecture of the ciliary base reveals the stepwise assembly of intraflagellar

transport trains. Science 377, 543-548. doi:10.1126/science.abm6704

Vuolo, L., Stevenson, N. L., Heesom, K. J. and Stephens, D. J. (2018). Dynein-2

intermediate chains play crucial but distinct roles in primary cilia formation and

function. eLife 7, e39655. doi:10.7554/eLife.39655

Vuolo, L., Stevenson, N. L., Mukhopadhyay, A. G., Roberts, A. J. and Stephens,

D. J. (2020). Cytoplasmic dynein-2 at a glance. J. Cell Sci. 133, jcs240614. doi:10.

1242/jcs.240614

Webb, S., Mukhopadhyay, A. G. and Roberts, A. J. (2020). Intraflagellar transport

trains and motors: insights from structure. Sem. Cell Dev. Biol. 107, 82-90.

Wu, C., Li, J., Peterson, A., Tao, K. and Wang, B. (2017). Loss of dynein-2

intermediate chain Wdr34 results in defects in retrograde ciliary protein trafficking

and Hedgehog signaling in the mouse. Hum. Mol. Genet. 26, 2386-2397. doi:10.

1093/hmg/ddx127

Zhang, W., Taylor, S. P., Ennis, H. A., Forlenza, K. N., Duran, I., Li, B., Ortiz

Sanchez, J. A., Nevarez, L., Nickerson, D. A., Bamshad, M. et al. (2018).

Expanding the genetic architecture and phenotypic spectrum in the skeletal

ciliopathy. Hum. Mut. 39, 152-166. doi:10.1002/humu.23362

Zhu, X., Liang, Y., Gao, F. and Pan, J. (2017). IFT54 regulates IFT20 stability but is

not essential for tubulin transport during ciliogenesis. Cell. Mol. Life Sci. 74,

3425-3437. doi:10.1007/s00018-017-2525-x

Zhu, X., Wang, J., Li, S., Lechtreck, K. and Pan, J. (2021). IFT54 directly interacts

with kinesin-II and IFT dynein to regulate anterograde intraflagellar transport.

EMBO J. 40, e105781. doi:10.15252/embj.2020105781

Biology Open

RESEARCH ARTICLE

11

Biology Open (2023): doi:10.1242/bio.BIO059976: Supplementary information

Fig. S1. Analyses of IFT54 genomic sequences of the IFT54-KO cell line

(A) Genomic DNA extracted from the IFT54-KO cell line #IFT54-4-3 was subjected to PCR using primer sets

(a, b, and c; Table S3) to detect alleles with forward (b) or reverse (c) integration of the donor knock-in vector

or no insertion/small indel (a). (B) The amplified DNAs with no insertion/small indel (allele 1) and reverse

integration of the donor vector (allele 2) were subjected to sequence analysis. Note that for allele 2, as an

unrelated long sequence from human chromosome 1 (LOC126805873), in addition to the knock-in vector

sequence, was inserted, we could not determine the exact insertion site of the knock-in vector. However, as the

abnormal cilia-lacking phenotype of the cell line #IFT54-4-3 was rescued by exogenous expression of

IFT54(WT) (see Fig. 1D, E), the abnormal phenotype is not likely to result from an off-target effect. (C, D)

Control RPE1 cells (C) and the #IFT54-4-3 cell line (D) were cultured under serum-starved conditions for 24 h

boxed regions are shown on the right. Scale bars, 5 µm. The #IFT54-4-3 cell line could not form cilia, consistent

with the disruption of both IFT54 alleles.

Biology Open • Supplementary information

to induce ciliogenesis, and doubly immunostained for FOP and ARL13B. Enlarged (2.5-fold) images of the

Biology Open (2023): doi:10.1242/bio.BIO059976: Supplementary information

Fig. S2: Uncropped images

Fig. 2: mChe-IFT54

Biology Open • Supplementary information

Fig. 2: IFT88

Biology Open (2023): doi:10.1242/bio.BIO059976: Supplementary information

Fig. S2: Uncropped images

Fig. 2: IFT52

Biology Open • Supplementary information

Fig. 2: IFT81

Biology Open (2023): doi:10.1242/bio.BIO059976: Supplementary information

Fig. S2: Uncropped images

Fig. 2: IFT25

Fig. 2: GAPDH

Biology Open • Supplementary information

Fig. S1A

Biology Open (2023): doi:10.1242/bio.BIO059976: Supplementary information

Table S1. Plasmids used in this study

Vector

Insert *

Reference

pRRLsinPPT-mCherry-C-IRES-Blast

IFT54

This study

pRRLsinPPT-mCherry-C-IRES-Blast

IFT54(1–532)

This study

pRRLsinPPT-mCherry-C-IRES-Blast

IFT54(135–625)

This study

pRRLsinPPT-mCherry-C-IRES-Blast

IFT54(335–625)

This study

pRRLsinPPT-mCherry-C-IRES-Blast

IFT54(488–625)

This study

pRRLsinPPT-mCherry-C-IRES-Blast

IFT54(507–625)

This study

pRRLsinPPT-mCherry-C-IRES-Blast

IFT54(533–625)

This study

pGEX-6P1

Anti-mCherry-Nanobody (LaM-2)

Ishida et al., 2021

Biology Open • Supplementary information

* All cDNA inserts except for that of anti-mCherry Nb are of human origin.

Biology Open (2023): doi:10.1242/bio.BIO059976: Supplementary information

Table S2. Antibodies used in this study

Clone/catalog number or reference

Antibody

Manufacturer

Polyclonal rabbit anti-IFT25

Proteintech

15732-1-AP

1:1,000 (IB)

Polyclonal rabbit anti-IFT52

Proteintech

17534-1-AP

1:1,000 (IB)

Polyclonal rabbit anti-IFT81

Proteintech

11744-1-AP

1:1,000 (IB)

Polyclonal rabbit anti-IFT88

Proteintech

13967-1-AP

1:500 (IF), 1:1,000 (IB)

Polyclonal rabbit anti-IFT140

Proteintech

17460-1-AP

1:500 (IF)

Polyclonal rabbit anti-GPR161

Proteintech

13398-1-AP

1:200 (IF)

Polyclonal rabbit anti-ARL13B

Proteintech

17711-1-AP

1:500 (IF)

Monoclonal mouse anti-ARL13B

Abcam

N295B/66

1:500 (IF)

Monoclonal mouse anti-FOP

Abnova

2B1

1:10,000 (IF)

Monoclonal mouse anti-Smoothened

Santa Cruz

sc-166685

1:100 (IF)

Monoclonal mouse anti-RFP

MBL

3G5

1:1,000 (IF)

Monoclonal mouse anti-GAPDH

Ambion

6C5

1:10,000 (IB)

Polyclonal rabbit anti-mCherry

Proteintech

26765-1-AP

1:10,000 (IB)

AlexaFluor-conjugated secondary

Molecular Probes

Peroxidase-conjugated secondary

Jackson

ImmunoResearch

number

A11034, A21127, A21131, A21147,

A21241, A21242, A21245

115-035-166, 111-035-144

Dilution (purpose)

1:1,000 (IF)

1:3,000 (IB)

Table S3. Oligodeoxyribonucleotides used in this study

Name

Sequence

IFT54-gRNA#4-S

5'-CACCGCAAGAGCGCACTTCCCCTG-3'

IFT54-gRNA#4-AS

5'-AAACCAGGGGAAGTGCGCTCTTGC-3'

IFT54-Genome-#4-FW

5'-GCAGTGCTGTGTCCTCTGAT-3'

IFT54-Genome-#4-RV

5'-TGCCACATCTGCAGCTCATT-3'

pTagBFP-N-RV2

5'-CGTAGAGGAAGCTAGTAGCCAGG-3'

S, sense; AS, antisense; FW, forward; RV, reverse

Biology Open • Supplementary information

IF, immunofluorescence; IB, immunoblotting

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る