リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Ubiquitination of DNA Damage-Stalled RNAPII Promotes Transcription-Coupled Repair」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Ubiquitination of DNA Damage-Stalled RNAPII Promotes Transcription-Coupled Repair

Nakazawa, Yuka Hara, Yuichiro Oka, Yasuyoshi Komine, Okiru van den Heuvel, Diana Guo, Chaowan Daigaku, Yasukazu Isono, Mayu He, Yuxi Shimada, Mayuko Kato, Kana Jia, Nan Hashimoto, Satoru Kotani, Yuko Miyoshi, Yuka Tanaka, Miyako Sobue, Akira Mitsutake, Norisato Suganami, Takayoshi Masuda, Akio Ohno, Kinji Nakada, Shinichiro Mashimo, Tomoji Yamanaka, Koji Luijsterburg, Martijn S. Ogi, Tomoo 名古屋大学

2020.03.19

概要

Transcription-coupled nucleotide excision repair (TC-NER) is initiated by the stalling of elongating RNA polymerase II (RNAPIIo) at DNA lesions. The ubiquitination of RNAPIIo in response to DNA damage is an evolutionarily conserved event, but its function in mammals is unknown. Here, we identified a single DNA damage-induced ubiquitination site in RNAPII at RPB1-K1268, which regulates transcription recovery and DNA damage resistance. Mechanistically, RPB1-K1268 ubiquitination stimulates the association of the core-TFIIH complex with stalled RNAPIIo through a transfer mechanism that also involves UVSSA-K414 ubiquitination. We developed a strand-specific ChIP-seq method, which revealed RPB1-K1268 ubiquitination is important for repair and the resolution of transcriptional bottlenecks at DNA lesions. Finally, RPB1-K1268R knockin mice displayed a short life-span, premature aging, and neurodegeneration. Our results reveal RNAPII ubiquitination provides a two-tier protection mechanism by activating TC-NER and, in parallel, the processing of DNA damage-stalled RNAPIIo, which together prevent prolonged transcription arrest and protect against neurodegeneration.

この論文で使われている画像

参考文献

Aboussekhra, A., Biggerstaff, M., Shivji, M.K., Vilpo, J.A., Moncollin, V., Podust,

V.N., Protic, M., Hubscher, U., Egly, J.M., and Wood, R.D. (1995). Mammalian

DNA nucleotide excision repair reconstituted with purified protein components.

Cell 80, 859-868.

Anindya, R., Aygun, O., and Svejstrup, J.Q. (2007). Damage-induced

ubiquitylation of human RNA polymerase II by the ubiquitin ligase Nedd4, but

not Cockayne syndrome proteins or BRCA1. Mol Cell 28, 386-397.

Bähler, J., Wu, J.Q., Longtine, M.S., Shah, N.G., McKenzie, A., Steever, A.B.,

Wach, A., Philippsen, P., and Pringle, J.R. (1998). Heterologous modules for

efficient and versatile PCR-based gene targeting in Schizosaccharomyces

pombe. Yeast. 14, 943-951.

Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer

for Illumina sequence data. Bioinformatics 30, 2114-2120.

Bregman, D.B., Halaban, R., van Gool, A.J., Henning, K.A., Friedberg, E.C.,

and Warren, S.L. (1996). UV-induced ubiquitination of RNA polymerase II: a

novel modification deficient in Cockayne syndrome cells. Proc Natl Acad Sci U

S A 93, 11586-11590.

Brookes, E., de Santiago, I., Hebenstreit, D., Morris, K.J., Carroll, T., Xie, S.Q.,

Stock, J.K., Heidemann, M., Eick, D., Nozaki, N., et al. (2012). Polycomb

associates genome-wide with a specific RNA polymerase II variant, and

regulates metabolic genes in ESCs. Cell stem cell 10, 157-170.

Brooks, P.J. (2008). The 8,5'-cyclopurine-2'-deoxynucleosides: Candidate

neurodegenerative DNA lesions in xeroderma pigmentosum, and unique probes

of transcription and nucleotide excision repair. DNA Repair (Amst) 7, 11681179.

Brueckner, F., Hennecke, U., Carell, T., and Cramer, P. (2007). CPD damage

recognition by transcribing RNA polymerase II. Science 315, 859-862.

Calmels, N., Botta, E., Jia, N., Fawcett, H., Nardo, T., Nakazawa, Y.,

Lanzafame, M., Moriwaki, S., Sugita, K., Kubota, M., et al. (2018). Functional

and clinical relevance of novel mutations in a large cohort of patients with

Cockayne syndrome. J Med Genet 55, 329-343.

Chen, M., Tomkins, D.J., Auerbach, W., McKerlie, C., Youssoufian, H., Liu, L.,

Gan, O., Carreau, M., Auerbach, A., Groves, T., et al. (1996). Inactivation of

Fac in mice produces inducible chromosomal instability and reduced fertility

reminiscent of Fanconi anaemia. Nat Genet 12, 448-451.

Elia, A.E., Boardman, A.P., Wang, D.C., Huttlin, E.L., Everley, R.A., Dephoure,

N., Zhou, C., Koren, I., Gygi, S.P., and Elledge, S.J. (2015). Quantitative

Proteomic Atlas of Ubiquitination and Acetylation in the DNA Damage

Response. Mol Cell 59, 867-881.

Fedorov A., Beichel R., Kalpathy-Cramer J., Finet J., Fillion-Robin J-C., Pujol

S., Bauer C., Jennings D., Fennessy F., Sonka M., Buatti J., Aylward S.R.,

Miller J.V., Pieper S., and Kikinis R. (2012). 3D Slicer as an Image Computing

Platform for the Quantitative Imaging Network. Magn Reson Imaging 30, 13231341.

Fei, J., and Chen, J. (2012). KIAA1530 protein is recruited by Cockayne

syndrome complementation group protein A (CSA) to participate in

transcription-coupled repair (TCR). J Biol Chem 287, 35118-35126.

Friedberg, E.C., Walker, G.C., Siede, W., Wood, R.D., Schultz, R.A., and

Ellenberger, T. (2005). DNA Repair and Mutagenesis, 2 edn (ASM Press).

Gregersen, L.H., and Svejstrup, J.Q. (2018). The Cellular Response to

Transcription-Blocking DNA Damage. Trends Biochem Sci 43, 327-341.

Haeussler, M., Schönig, K., Eckert, H., Eschstruth, A., Mianné, J., Renaud, J.B.,

Schneider-Maunoury, S., Shkumatava, A., Teboul, L., Kent, J., Joly, J.S., and

Concordet, J.P. (2016). Evaluation of off-target and on-target scoring algorithms

and integration into the guide RNA selection tool CRISPOR. Genome Biol 17,

148.

Hanawalt, P.C., and Spivak, G. (2008). Transcription-coupled DNA repair: two

decades of progress and surprises. Nat Rev Mol Cell Biol 9, 958-970.

He, Y., Yan, C., Fang, J., Inouye, C., Tjian, R., Ivanov, I., and Nogales, E.

(2016). Near-atomic resolution visualization of human transcription promoter

opening. Nature 533, 359-365.

Higa, M., Tanaka, K., and Saijo, M. (2018). Inhibition of UVSSA ubiquitination

suppresses transcription-coupled nucleotide excision repair deficiency caused

by dissociation from USP7. FEBS J 285, 965-976.

Jackson, S.P., and Bartek, J. (2009). The DNA-damage response in human

biology and disease. Nature 461, 1071-1078.

Jia, N., Nakazawa, Y., Guo, C., Shimada, M., Sethi, M., Takahashi, Y., Ueda,

H., Nagayama, Y., and Ogi, T. (2015). A rapid, comprehensive system for

assaying DNA repair activity and cytotoxic effects of DNA-damaging reagents.

Nat Protoc 10, 12-24.

Kanehisa, M., and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and

genomes. Nucleic Acids Res 28, 27-30.

Kashiyama, K., Nakazawa, Y., Pilz, D.T., Guo, C., Shimada, M., Sasaki, K.,

Fawcett, H., Wing, J.F., Lewin, S.O., Carr, L., et al. (2013). Malfunction of

nuclease ERCC1-XPF results in diverse clinical manifestations and causes

Cockayne syndrome, xeroderma pigmentosum, and Fanconi anemia. Am J

Hum Genet 92, 807-819.

Kleiman, F.E., Wu-Baer, F., Fonseca, D., Kaneko, S., Baer, R., and Manley,

J.L. (2005). BRCA1/BARD1 inhibition of mRNA 3' processing involves targeted

degradation of RNA polymerase II. Genes Dev 19, 1227-1237.

Langevin, F., Crossan, G.P., Rosado, I.V., Arends, M.J., and Patel, K.J. (2011).

Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice.

Nature 475, 53-58.

Laposa, R.R., Huang, E.J., and Cleaver, J.E. (2007). Increased apoptosis, p53

up-regulation, and cerebellar neuronal degeneration in repair-deficient

Cockayne syndrome mice. Proc Natl Acad Sci U S A 104, 1389-1394.

Laugel, V. (2013). Cockayne syndrome: the expanding clinical and mutational

spectrum. Mech Ageing Dev 134, 161-170.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,

Abecasis, G., Durbin, R., and Genome Project Data Processing Subgroup

(2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics 25,

2078-2079.

Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs

with BWA-MEM. https://arxiv.org/abs/1303.3997

Limsirichaikul, S., Niimi, A., Fawcett, H., Lehmann, A., Yamashita, S., and Ogi,

T. (2009). A rapid non-radioactive technique for measurement of repair

synthesis in primary human fibroblasts by incorporation of ethynyl deoxyuridine

(EdU). Nucleic Acids Res 37, e31.

Ljungman, M., and Zhang, F. (1996). Blockage of RNA polymerase as a

possible trigger for u.v. light-induced apoptosis. Oncogene 13, 823-831.

Lommel, L., Bucheli, M.E., and Sweder, K.S. (2000). Transcription-coupled

repair in yeast is independent from ubiquitylation of RNA pol II: implications for

Cockayne's syndrome. Proc Natl Acad Sci U S A 97, 9088-9092.

Marteijn, J.A., Lans, H., Vermeulen, W., and Hoeijmakers, J.H. (2014).

Understanding nucleotide excision repair and its roles in cancer and ageing. Nat

Rev Mol Cell Biol 15, 465-481.

Mayer, A., Landry, H.M., and Churchman, L.S. (2017). Pause & go: from the

discovery of RNA polymerase pausing to its functional implications. Curr Opin

Cell Biol 46, 72-80.

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky,

A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., et al. (2010). The Genome

Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA

sequencing data. Genome Res 20, 1297-1303.

Menoni, H., Wienholz, F., Theil, A.F., Janssens, R.C., Lans, H., Campalans, A.,

Radicella, JP., Marteijn, J.A., and Vermeulen, W. (2018). The transcriptioncoupled DNA repair-initiating protein CSB promotes XRCC1 recruitment to

oxidative DNA damage. Nucleic Acids Res 46, 7747-7756.

Moreno, S., Klar, A., and Nurse, P. (1991). Molecular genetic analysis of fission

yeast Schizosaccharomyces pombe. Methods Enzymol 194, 795-823.

Naito, Y., Hino, K., Bono, H., and Ui-Tei, K. (2015). CRISPRdirect: software for

designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics,

31, 1120–1123.

Nakane, H., Takeuchi, S., Yuba, S., Saijo, M., Nakatsu, Y., Murai, H.,

Nakatsuru, Y., Ishikawa, T., Hirota, S., Kitamura, Y., et al. (1995). High

incidence of ultraviolet-B-or chemical-carcinogen-induced skin tumours in mice

lacking the xeroderma pigmentosum group A gene. Nature 377, 165-168.

Nakazawa, Y., Sasaki, K., Mitsutake, N., Matsuse, M., Shimada, M., Nardo, T.,

Takahashi, Y., Ohyama, K., Ito, K., Mishima, H., et al. (2012). Mutations in

UVSSA cause UV-sensitive syndrome and impair RNA polymerase IIo

processing in transcription-coupled nucleotide-excision repair. Nat Genet 44,

586-592.

Nakazawa, Y., Yamashita, S., Lehmann, A.R., and Ogi, T. (2010). A semiautomated non-radioactive system for measuring recovery of RNA synthesis

and unscheduled DNA synthesis using ethynyluracil derivatives. DNA Repair

(Amst) 9, 506-516.

Nouspikel, T. (2011). Multiple roles of ubiquitination in the control of nucleotide

excision repair. Mech Ageing Dev 132, 355-365.

Odawara, J., Harada, A., Yoshimi, T., Maehara, K., Tachibana, T., Okada, S.,

Akashi, K., and Ohkawa, Y. (2011). The classification of mRNA expression

levels by the phosphorylation state of RNAPII CTD based on a combined

genome-wide approach. BMC Genomics 12, 516.

Okuda, M., Nakazawa, Y., Guo, C., Ogi, T., and Nishimura, Y. (2017). Common

TFIIH recruitment mechanism in global genome and transcription-coupled repair

subpathways. Nucleic Acids Res 45, 13043-13055.

Parmar, K., D'Andrea, A., and Niedernhofer, L.J. (2009). Mouse models of

Fanconi anemia. Mutat Res 668, 133-140.

Paulsen, M.T., Veloso, A., Prasad, J., Bedi, K., Ljungman, E.A., Magnuson, B.,

Wilson, T.E., and Ljungman, M. (2014). Use of Bru-Seq and BruChase-Seq for

genome-wide assessment of the synthesis and stability of RNA. Methods 67,

45-54.

Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for

comparing genomic features. Bioinformatics 26, 841-842.

Rahl, P.B., Lin, C.Y., Seila, A.C., Flynn, R.A., McCuine, S., Burge, C.B., Sharp,

P.A., and Young, R.A. (2010). c-Myc regulates transcriptional pause release.

Cell 141, 432-445.

Ran, F.A., Hsu, P.D., Wright, J., Agarwala, V., Scott, D.A., and Zhang, F. (2013)

Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8, 22812308.

Ramirez, F., Dundar, F., Diehl, S., Gruning, B.A., and Manke, T. (2014).

deepTools: a flexible platform for exploring deep-sequencing data. Nucleic

Acids Res 42, W187-191.

Ratner, J.N., Balasubramanian, B., Corden, J., Warren, S.L., and Bregman,

D.B. (1998). Ultraviolet radiation-induced ubiquitination and proteasomal

degradation of the large subunit of RNA polymerase II. Implications for

transcription-coupled DNA repair. J Biol Chem 273, 5184-5189.

Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H., and Vilo,

J. (2019). g:Profiler: a web server for functional enrichment analysis and

conversions of gene lists (2019 update). Nucleic Acids Res 47, W191-W198.

Reid-Bayliss, K.S., Arron, S.T., Loeb, L.A., Bezrookove, V., and Cleaver, J.E.

(2016). Why Cockayne syndrome patients do not get cancer despite their DNA

repair deficiency. Proc Natl Acad Sci U S A 113, 10151-10156.

Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: a

Bioconductor package for differential expression analysis of digital gene

expression data. Bioinformatics 26, 139-140.

Schwertman, P., Lagarou, A., Dekkers, D.H., Raams, A., van der Hoek, A.C.,

Laffeber, C., Hoeijmakers, J.H., Demmers, J.A., Fousteri, M., Vermeulen, W., et

al. (2012). UV-sensitive syndrome protein UVSSA recruits USP7 to regulate

transcription-coupled repair. Nat Genet 44, 598-602.

Shen, L., Shao, N., Liu, X., and Nestler, E. (2014). ngs.plot: Quick mining and

visualization of next-generation sequencing data by integrating genomic

databases. BMC Genomics 15, 284.

Somesh, B.P., Reid, J., Liu, W.F., Sogaard, T.M., Erdjument-Bromage, H.,

Tempst, P., and Svejstrup, J.Q. (2005). Multiple mechanisms confining RNA

polymerase II ubiquitylation to polymerases undergoing transcriptional arrest.

Cell 121, 913-923.

Somesh, B.P., Sigurdsson, S., Saeki, H., Erdjument-Bromage, H., Tempst, P.,

and Svejstrup, J.Q. (2007). Communication between distant sites in RNA

polymerase II through ubiquitylation factors and the polymerase CTD. Cell 129,

57-68.

Soucy, T.A., Smith, P.G., Milhollen, M.A., Berger, A.J., Gavin, J.M., Adhikari, S.,

Brownell, J.E., Burke, K.E., Cardin, D.P., Critchley, S., et al. (2009). An inhibitor

of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458,

732-736.

Starita, L.M., Horwitz, A.A., Keogh, M.C., Ishioka, C., Parvin, J.D., and Chiba,

N. (2005). BRCA1/BARD1 ubiquitinate phosphorylated RNA polymerase II. J

Biol Chem 280, 24498-24505.

Storey, J.D., and Tibshirani, R. (2003). Statistical significance for genomewide

studies. Proc Natl Acad Sci U S A 100, 9440-9445.

Sugaya, K., Vigneron, M., and Cook, P.R. (2000). Mammalian cell lines

expressing functional RNA polymerase II tagged with the green fluorescent

protein. J Cell Sci 113, 2679-2683.

Thorvaldsdottir, H., Robinson, J.T., and Mesirov, J.P. (2013). Integrative

Genomics Viewer (IGV): high-performance genomics data visualization and

exploration. Brief Bioinform 14, 178-192.

Tischler, G., and Leonard, S. (2014). biobambam: tools for read pair collation

based algorithms on BAM files. Source Code for Biology and Medicine 9, 13.

https://doi.org/10.1186/1751-0473-9-13

van der Horst, G.T., van Steeg, H., Berg, R.J., van Gool, A.J., de Wit, J.,

Weeda, G., Morreau, H., Beems, R.B., van Kreijl, C.F., de Gruijl, F.R., et al.

(1997). Defective transcription-coupled repair in Cockayne syndrome B mice is

associated with skin cancer predisposition. Cell 89, 425-435.

van der Pluijm, I., Garinis, G.A., Brandt, R.M., Gorgels, T.G., Wijnhoven, S.W.,

Diderich, K.E., de Wit, J., Mitchell, J.R., van Oostrom, C., Beems, R., et al.

(2007). Impaired genome maintenance suppresses the growth hormone-insulin-like growth factor 1 axis in mice with Cockayne syndrome. PLoS Biol 5,

e2.

van der Weegen, Y., H.G. Berman, T.E.T. Mevissen, K. Apelt, R. GonzálezPrieto, E. Heilbrun, A.C.O. Vertegaal, D. van den Heuvel, J.C. Walter, S. Adar,

and M.S. Luijsterburg. 2019. The sequential and cooperative action of CSB,

CSA and UVSSA targets the TFIIH complex to DNA damage-stalled RNA

polymerase II. https://www.biorxiv.org/content/10.1101/707216v1

Wang, Y., Chakravarty, P., Ranes, M., Kelly, G., Brooks, P.J., Neilan, E.,

Stewart, A., Schiavo, G., and Svejstrup, J.Q. (2014). Dysregulation of gene

expression as a cause of Cockayne syndrome neurological disease. Proc Natl

Acad Sci U S A 111, 14454-14459.

Watson, A.T., Garcia, V., Bone, N., Carr, A.M., and Armstrong, J. (2008). Gene

tagging and gene replacement using recombinase-mediated cassette exchange

in Schizosaccharomyces pombe. Gene 407, 63-74.

Woudstra, E.C., Gilbert, C., Fellows, J., Jansen, L., Brouwer, J., ErdjumentBromage, H., Tempst, P., and Svejstrup, J.Q. (2002). A Rad26-Def1 complex

coordinates repair and RNA pol II proteolysis in response to DNA damage.

Nature 415, 929-933.

Xu, J., Lahiri, I., Wang, W., Wier, A., Cianfrocco, M.A., Chong, J., Hare, A.A.,

Dervan, P.B., DiMaio, F., Leschziner, A.E., et al. (2017). Structural basis for the

initiation of eukaryotic transcription-coupled DNA repair. Nature 551, 653-657.

Yamaizumi, M., and Sugano, T. (1994). U.v.-induced nuclear accumulation of

p53 is evoked through DNA damage of actively transcribed genes independent

of the cell cycle. Oncogene 9, 2775-2784.

Yasukawa, T., Kamura, T., Kitajima, S., Conaway, R.C., Conaway, J.W., and

Aso, T. (2008). Mammalian Elongin A complex mediates DNA-damage-induced

ubiquitylation and degradation of Rpb1. EMBO J 27, 3256-3266.

Zhang, X., Horibata, K., Saijo, M., Ishigami, C., Ukai, A., Kanno, S., Tahara, H.,

Neilan, E.G., Honma, M., Nohmi, T., et al. (2012). Mutations in UVSSA cause

UV-sensitive syndrome and destabilize ERCC6 in transcription-coupled DNA

repair. Nat Genet 44, 593-597.

Figure 1

Click here to access/download;Figure;NakazawaFig1R3.tiff

Figure 2

Click here to access/download;Figure;NakazawaFig2R3.tiff

Figure 3

Click here to access/download;Figure;NakazawaFig3R3.tiff

Figure 4

Click here to access/download;Figure;NakazawaFig4R1.tiff

Figure 5

Click here to access/download;Figure;NakazawaFig5R1.tiff

Figure 6

Click here to access/download;Figure;NakazawaFig6R3.tiff

Figure 7

Click here to access/download;Figure;NakazawaFig7R3.tiff

Supplemental Information Tables S1-S7

Table S1 SILAC differential mass-spectrometry identified RPB1-K1268 ubiquitination in UVirradiated cells (1 h, 10 J/m2), Related to Figure 1

Annotated

Sequence

in RPB1

(P24928)

Qvality

PEP

Qvality

q-value

PSMs

IMNSDE

N(K)MQ

EEEEVV

DKMDD

DVFLR

(1xGG

[K8])

9.5698

×10-8

Positions

# Missed

Cleavages

Theoretical

MH+ (Da)

Abundances

(scaled)

(WT)

Abundances

(scaled)

(∆UVSSA)

Abundance

Ratio*

(∆UVSSA) /

(WT)

12611286

3272.43918

177.8

22.2

0.125

*SILAC ratio. Ubiquitinated lysine residue is indicated by boldface. WT, HCT116 wild-type cells;

∆UVSSA, UVSSA-deleted HCT116 cells.

Table S2 Mass-spectrometry identified RPB1-K1268 ubiquitination after UV irradiation (1 h,

20 J/m2), Related to Figure 1

Positions

in RPB1 (P24928)

GlyGly (K)

Intensity

Intensity

probabilities

in detected

(Replicate. 1) (Replicate. 2)

peptides*

Modifications

0 NICEGGEEMDNK

(1)FGVEQPEGDEDLTK 1xGG [K12]

163

4285100

177

13760000

0 FGVEQPEGDEDLTK

(0.869)EK (0.131)

1xGG [K14]

758

1949200

TGSSAQK

0 (0.996)SLSEYNNFK

(0.004)

1xGG [K7]

853

1268

20479000

1350

2449300

1245900 EGLIDTAVK

(1)TAETGYIQR

10857000 IMNSDENK

(1)MQEEEEVVDK

0 VLSEK (1)DVDPVR

1xGG [K9]

1xGG [K8],

Oxidation [M2]

1xGG [K5]

*Ubiquitinated lysine residue is indicated by boldface. Probabilities of ubiquitination for each

lysine residue were shown in parentheses. Wild-type HeLa cells were UV irradiated.

Table S3 CRISPR/Cas9-based gene editing and cell lines used in this study, Related to Figure 1

and STAR Methods

Cell line

CRISPR/Cas9

guide RNA

(gRNA)

(1) HCT116

UVSSA cell line

UVSSA

GTGTGGAGGT

CCCTGAGAAG

Homology directed repair (HDR) oligos

clone # used

in this study

#1

(2) HeLa RPB1-KR mutants

RBP1K163R

RBP1K177R

RBP1K642R/

K643R

RBP1K710R

RBP1K767R

RBP1K796R

RBP1K812R

RBP1K853R

GATGGACAAC

AAGTTCGGTG

CCTCCAGGCCTCTGACCCCTCCTTCCCA

AAAGTCTCCGCCAGCCCCAGCCACCTTT

TCTTTGGTCAGATCCTCGTCACCCTCAG

GTTGTTC[g**]ACACCGAAC[C*]TGTTGTC

CATCTCCTCCCCACCCTCGCATATGTTTT

GGATCTGACC CCAGCCCCTCCTGTTTCCTTCCCTTCCAG

AAAGAAAAGG TTTCCTCCCTCCAGGCCTCTGACCCCTCC

TTCCCAAAAGTCTCCGCCAGCCCCAGCC

ACCTT[c**]TCT[C*]TGGTCAGATCCTCGT

CACCCTCAGGTTGTTCCACACC

GTGCCCAGAG ATTTGGACGTGGGAGCCAGGACCAGAG

ACTTCTTACAC CAGGGGCCTTGAGTGGGTGCTTTGTCCT

TAGGTGGTGGTGGAGAATGGGGAGCTG

ATCATGGGCAT[t**]CTGTGTA[G*]GA[G*]

GTCTCTGGGCACGTCAGCTGGCTCCCTG

GTCCACATC

GCACTATTAA

ACTCCCTTTGCTCTTGATGATGCTAACTT

GAAGGCCAAG CGAAGTCCCTGGAAACCCCTTATTCCGT

CTCTGGTGGCCTCCCCTCTTACCTCTATT

ACGTC[t**]TGC[C*]TGGCCTTCTTAATAG

TGTTCTGAATGTCCTGGTAAGT

GTTCAAGTCTA TCCTTCCTCCTCCCAAACTTCACAGCGG

TGGTCGTGTC

CCCCGTATATGGAAAAACAAGGCTTCTC

ACCTGGGAGATGTTAATCTTGGAACCTT

TAGCTCCG[ctg**]ACGACCATAGAC[C*]T

GAAGTTATTGTATTCAGACAGGGATTTC

TGAGCAGA

GAGCAGAACG GGTAGGAGTTCTCCACAAAGCCACGGCT

TCGAGGGCAA CTCAGGCCCGTAGTCATCCTTGATGAAG

TGAGGCAGAGTCCGGTGCTTGAAGCCA

AATGGAAT[t**]C[t**]C[C*]TGCCCTCGAC

GTTCTGCTGTCCAACGACAGCAATGAC

GACTCTGCCTC CCCCCATGGCGTGGAAAAAGAACTCAG

ACTTCATCA

TGGGTGTGAGGCCGGCTAGGTAGGAGT

TCTCCACAAAGCCACGGCTCTCAGGCCC

GTAGTCATC[t**C*]TGATGAAGTGAGGCA

GAGTCCGGTGCTTGAAGCCAAA

GCTGTCAAGA GAGCATTTCCGCTCCCCACCTGTTAGGG

CTGCTGAGAC GTTTCTCAGCCTGCAGCAGTCCCTGCTA

ACAGCCCAAGGAAGACCCCTGAGGAAA

#4

#8

# 16

# 23

#2

# 14

# 32

# 29

RBP1K866R

GCGGCGGCTG

ATCAAGTCCA

RBP1K874R

GTGAAGTACG

ACGCGACTGT

RBP1K1225R

GACTGACCGG

AAGCTCACCA

RBP1K1268R

GCGATGAGAA

CAAGATGCAA

RBP1K1350R

GGTGCTGAGT

GAGAAGGACG

GCCTCACC[g**]GT[t**]TCAGCAGTC[C*]T

GACAGCCGTGTCAATGAGCCCCTCACGA

CCCCCCAT

CCAGGCCGTCTTCGCCGTAGCGCAGCTG

CACCACCTGGTTGATGGAGTTCCGCACA

GTCGCGTCGTACTTCACCATCACTGACT

CCATGGAC[C*]TGATCAGCC[t**]CCGCTG

GATGTATCCTGGAGGGAAGTAAGGGGA

TGA

GCTTAAGCGTAGCCAGGTTCTGGAACTC

AACGCTCTCGCCTGCCAGGCCGTCTTCG

CCGTAGCGCAGCTGCACCACCTGGTTGA

TGGAGTT[t**]C[t**]CACAGTCGCGTCGTA

C[C*]TCACCATCACTGACTCCATGGACTT

GATCAGCCGCCG

ACGATAGGTGGTAGCCCAGAGAGCGGG

GCTCCTGAGCCAGGCCAGCCCTCCTAGG

CTTACCAGCATTGATCTTTTCAGCAATC

TGCTCCAT[t**]GT[c**]A[a**]C[C*]TCCGGT

CAGTCATGTGCTTCCGATCCAGCTCCAC

CCG

AGGTTTTGGTGACGACTTGAACTGCATC

TTTAATGATGACAATGCAGAGAAGCTG

GTGCTCCGTATTCGCATCATGAACAGCG

ATGAGAACA[G*]GATGCAAGAGGTAAT

GGGGGTCCTAGAAGTCAGCGTG

AGCCAGAGATCCACGAAAGGCAGCTAG

GCAGCACACACGGGCTCACCGTGAAGA

TCTCCACAATGTCATTGGACGTGGTGCG

TACGGGGTC[g**]ACGTC[t**C*]TCTCACT

CAGCACCCGCATCAAGCTCACGCCGTCC

GT

#3

#4

# 21

# 7 (Fig. 1B,

1C),

# 9 (all Figs.)

#8

(3) HeLa ∆TCR mutants

CSA

CSB

UVSSA,

UVSSAΔK414

GTCCGCACGC CAAACGGGTT

GCTTCTCCACG TCAACGAGCT

GTGTGGAGGT CCCTGAGAAG

#5

#1

#5

#1

(4) HEK293 GFP-RPB1 expressing cell lines

RPB1GCCTGCCTCCG #1

WT***

CCATGCACG

RPB1#7

K1268R***

RPB1-WT, same as above

# 13

CSA***

*Lys->Arg target mutations; **silent mutations (lower cases). ***endogenous POLR2A alleles were

deleted.

Table S4 Polr2aK1268R/K1268R single mutant mice phenotype, Related to Figure 7

Parameter

Sex

Age

(days)

Polr2aWT/WT

Bodyweight

(g)

80±5

Polr2aWT/KR

Polr2aKR/KR

pvalue*

27.0±1.8 (6) 26.5±1.7 (6)

26.9±2.1

(10)

1.00

110±5

28.0±2.1 (6) 28.3±2.0 (6)

28.4±2.3

(10)

1.00

130±5

29.3±2.2 (6) 29.0±2.6 (6)

29.3±2.6

(10)

1.00

80±5

19.9±1.1 (7)

20.3±1.1

(16)

20.1±1.4 (8)

0.866

110±5

20.9±0.92

(7)

21.2±1.2

(16)

21.5±1.2 (8)

0.866

130±5

21.3±1.1 (7)

21.7±0.97

(16)

21.8±1.1 (8)

0.866

Fertility

♂+♀

60->365

Normal

Normal

Normal

Gait

abnormalities

♂+♀

90->365

Hind limb

dystonia

♂+♀

20->365

Kyphosis

♂+♀

90->365

Remarks

Results

from a tail

suspension

test.

Values are average ± S.D; number of tested animals are shown in parentheses. *P-values were

calculated to test the difference in bodyweights between Polr2aWT/WT vs Polr2aKR/KR animals with

the Mann-Whitney U-test, and were corrected by the Benjamini-Hochberg method. WT, wild type;

KR, K1268R.

Table S5 Polr2aK1268R/K1268R / Xpa+/- mice phenotype (Xpa heterozygous deletion), Related to

Figure 7

Parameter

Sex

Age

(days)

Polr2aWT/WT

/ Xpa+/-

Bodyweight

(g)

80±5

24.5±1.4 (5) 24.9±1.5 (8)

110±5

150±7

Polr2aKR/KR

/ Xpa+/-

pvalue*

26.0±1.2

(12)

0.172

27.8±1.3 (6)

0.240

27.7±2.3 (4) 29.0±1.2 (6) 29.1±1.2 (6)

0.202

26.6±0.84

(4)

Polr2aWT/KR

/ Xpa+/-

27.4±1.1

(10)

260±10

32 (1)

32.2±2.1 (4) 33.6±1.1 (2)

80±5

19.6±1.2 (6)

20.1±0.87

(12)

20.7±0.0 (2)

0.241

110±5

20.7±0.65

(4)

21.6±0.85

(12)

25.1 (1)

NA

150±7

22.1±1.57

(3)

22.4±1.0 (9)

NA

NA

Fertility

♂+♀

60->365

Normal

Normal

Normal

Gait

abnormalities

♂+♀

90->365

Hind limb

dystonia

♂+♀

20->365

Kyphosis

♂+♀

90->365

Remarks

NA

Results

from a tail

suspensio

n test.

Values are average ± S.D; number of tested animals are shown in parentheses. *P-values were

calculated to test the difference in bodyweights between Polr2aWT/WT / Xpa+/- vs Polr2aKR/KR / Xpa+/animals with the Mann-Whitney U-test, and were corrected by the Benjamini-Hochberg method.

WT, wild type; KR, K1268R.

Table S6 DM mice phenotype, Related to Figure 7

Parameter

Sex

Age

(days)

Polr2aWT/WT

/ Xpa-/-

Polr2aWT/KR

/ Xpa-/-

Polr2aKR/KR

/ Xpa-/(DM)

pvalue*

Remarks

Bodyweight

(g)

80±5

26.2±1.3 (9)

22.5±3.4

(22)

18.5±2.4

(4)

0.009

52

110±5

27.9±1.2 (6)

24.2±2.8

(10)

18.2±1.6

(4)

0.009

52

150±7

28.9±1.5 (8)

26.5±2.1

(12)

16.2±1.3

(5)

0.004

66

Differences

between

WT/WT and

WT/K1268R

are also

statistically

significant in

male mice (<

160 days).

275±5

32.5±3.3 (3)

31.2±0.75

(3)

NA

NA

80±5

19.0±1.1

(11)

19.3±1.0

(16)

14.8±2.0

(4)

0.000

754

110±5

20.7±0.8

(12)

20.7±0.9

(16)

14.9±2.0

(4)

0.004

35

150±7

21.4±0.7

(10)

21.6±1.0

(14)

14.8±0.8

(5)

0.004

01

NA

NA

275±5

25.5±3.6 (4) 23.8±1.5 (7)

Fertility

♂+♀

60>365

Normal

Normal

Not Tested

Gait

abnormalities

♂+♀

90

Moderate

120180

Prominent

Hind limb

dystonia

♂+♀

20-180

Kyphosis

♂+♀

90

Moderate

150180

Prominent

Depigmentati

on

(animals)

♂+♀

90-180

0 (21)

0 (40)

2 (12)

Cataract

(animals)

♂+♀

90-180

0 (21)

0 (40)

2 (12)

Results from a

tail

suspension

test.

Monocular

cases.

Values are average ± S.D; number of tested animals are shown in parentheses. *P-values were

calculated to test the difference in bodyweights between Polr2aWT/WT / Xpa-/- vs Polr2aKR/KR / Xpa-/(DM) animals with the Mann-Whitney U-test, and were corrected by the Benjamini-Hochberg

method. WT, wild type; KR, K1268R.

Table S7 ChIP-seq data summary, Related to STAR Methods

Analysis in which sequence data were used

Cell type

UV

Time after

Replicate

Antibody

(Hela Mutant)

(J/m2)

irradiation

ngsplot

SSI-scatter

SSI-RI

replicate-

SSI

check

difference

T-T site

SRA Run ID

PreCR

number

Fig. 4B, 4C,

Fig. 4G,

Fig. 5B, 5C, Fig. 5D, 5E,

Fig. 6A-E,

Fig. S4D

S4A, S4B

S4E

S5B-D

S5E, S5F

Fig. 4F

S6A

RPB1-K1268R

0h

3E10

SRR9722058

RPB1-K1268R

0h

3E10

SRR9722057

RPB1-K1268R

5m

3E10

SRR9722060

RPB1-K1268R

30m

3E10

SRR9722059

RPB1-K1268R

1h

3E10

SRR9722062

RPB1-K1268R

1h

3E10

SRR9722061

RPB1-K1268R

3h

3E10

SRR9722064

RPB1-K1268R

3h

3E10

SRR9722063

RPB1-K1268R

6h

3E10

SRR9722056

RPB1-K1268R

6h

3E10

SRR9722055

RPB1-K1268R

12h

3E10

SRR9722145

RPB1-K1268R

12h

3E10

SRR9722144

RPB1-K1268R

12h

3E10

SRR9722143

WT

0h

3E10

SRR9722142

WT

0h

3E10

SRR9722156

WT

5m

3E10

SRR9722155

WT

30m

3E10

SRR9722147

WT

1h

3E10

SRR9722146

WT

1h

3E10

SRR9722158

WT

3h

3E10

SRR9722157

WT

3h

3E10

SRR9722079

WT

6h

3E10

SRR9722080

WT

6h

3E10

SRR9722077

WT

12h

3E10

SRR9722078

WT

12h

3E10

SRR9722083

WT

12h

3E10

SRR9722084

WT

12h

3E10

SRR9722081

!CSA

0h

3E10

SRR9722082

!CSA

0h

3E10

SRR9722075

!CSA

5m

3E10

SRR9722076

!CSA

30m

3E10

SRR9722068

!CSA

1h

3E10

SRR9722067

!CSA

1h

3E10

SRR9722070

!CSA

3h

3E10

SRR9722069

!CSA

3h

3E10

SRR9722072

!CSA

6h

3E10

SRR9722071

!CSA

6h

3E10

SRR9722074

!CSA

12h

3E10

SRR9722073

!CSA

12h

3E10

SRR9722066

!CSB

0h

3E10

SRR9722065

!CSB

0h

3E10

SRR9722097

!CSB

5m

3E10

SRR9722098

!CSB

30m

3E10

SRR9722099

!CSB

1h

3E10

SRR9722100

!CSB

1h

3E10

SRR9722101

!CSB

3h

3E10

SRR9722102

!CSB

3h

3E10

SRR9722103

!CSB

6h

3E10

SRR9722104

!CSB

6h

3E10

SRR9722095

!CSB

12h

3E10

SRR9722096

!CSB

12h

3E10

SRR9722094

!UVSSA

0h

3E10

SRR9722093

!UVSSA

0h

3E10

SRR9722092

!UVSSA

30m

3E10

SRR9722090

!UVSSA

5m

3E10

SRR9722091

!UVSSA

1h

3E10

SRR9722089

!UVSSA

1h

3E10

SRR9722088

!UVSSA

3h

3E10

SRR9722087

!UVSSA

3h

3E10

SRR9722086

!UVSSA

6h

3E10

SRR9722085

!UVSSA

6h

3E10

SRR9722121

!UVSSA

12h

3E10

SRR9722122

!UVSSA

12h

3E10

SRR9722119

!CSA

0h

3E8

SRR9722120

!CSA

3h

3E8

SRR9722117

!CSA

6h

3E8

SRR9722118

!CSA

12h

3E8

SRR9722115

!CSB

0h

3E8

SRR9722116

!CSB

3h

3E8

SRR9722123

!CSB

6h

3E8

SRR9722124

!CSB

12h

3E8

SRR9722110

!UVSSA

0h

3E8

SRR9722109

!UVSSA

3h

3E8

SRR9722112

!UVSSA

6h

3E8

SRR9722111

!UVSSA

12h

3E8

SRR9722106

RPB1-K1268R

0h

3E8

SRR9722105

RPB1-K1268R

3h

3E8

SRR9722108

RPB1-K1268R

6h

3E8

SRR9722107

RPB1-K1268R

12h

3E8

SRR9722114

WT

0h

3E8

SRR9722113

WT

3h

3E8

SRR9722152

WT

6h

3E8

SRR9722153

WT

12h

3E8

SRR9722154

!CSA

0h

A304-405A

SRR9722052

!CSA

3h

A304-405A

SRR9722148

!CSA

6h

A304-405A

SRR9722149

!CSA

12h

A304-405A

SRR9722150

!CSB

0h

A304-405A

SRR9722151

!CSB

3h

A304-405A

SRR9722053

!CSB

6h

A304-405A

SRR9722054

!CSB

12h

A304-405A

SRR9722137

!UVSSA

0h

A304-405A

SRR9722136

!UVSSA

3h

A304-405A

SRR9722135

!UVSSA

6h

A304-405A

SRR9722134

!UVSSA

12h

A304-405A

SRR9722141

RPB1-K1268R

0h

A304-405A

SRR9722140

RPB1-K1268R

3h

A304-405A

SRR9722139

RPB1-K1268R

6h

A304-405A

SRR9722138

RPB1-K1268R

12h

A304-405A

SRR9722133

WT

0h

A304-405A

SRR9722132

WT

3h

A304-405A

SRR9722127

WT

6h

A304-405A

SRR9722128

WT

12h

A304-405A

SRR9722125

WT

0h

ab5095

SRR9722129

WT

3h

ab5095

SRR9722126

WT + PreCR-20min

3h

ab5095

SRR9722131

WT + PreCR-2h

3h

ab5095

SRR9722130

The sequence data were deposited in the NCBI Short Read Archive (SRA), with the BioProject

accession number, PRJNA548234.

Supplemental Figure S1

Click here to access/download;Supplemental

Figure;NakazawaFigS1R3.tiff

Supplemental Figure S2

Click here to access/download;Supplemental

Figure;Nak ...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る