リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Pathways, timescales and transport of the Indonesian Throughflow, and water mass transformation in the Indonesian Seas」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Pathways, timescales and transport of the Indonesian Throughflow, and water mass transformation in the Indonesian Seas

ISKANDAR Mochamad Riza 東北大学

2020.09.25

概要

The tropical Indonesian Seas play an important role in the climate system. There is a central water flow in this sea called the Indonesian Throughflow (ITF). ITF is recognized as one of the important currents in the global thermohaline circulation that connects the Pacific and the Indian Ocean. The heat and freshwater carried by the ITF is identified to have an impact on the Pacific and the Indian Ocean. Within the Indonesian Seas, the characteristics of the Pacific water, marked by the large salinity variations in the vertical direction, are modified to form nearly isohaline profile. The water masses from the Indonesian Seas can be distinguished in the Indian Ocean as low salinity water. Existing knowledge about the ITF is still limited, especially on the influence of small-scale ocean features on the main ITF routes. In addition, the transformation of thermocline water masses that turn into isohaline profiles is still not fully understood. The linkages between the water masses from the Indonesian Seas and the atmospheric flux associated with global hydrological cycle is also needed to investigate. This thesis aims to answer three main research questions: how the high- frequency flow variabilities affect the ITF’s residence time and path, how the saline thermocline Pacific water masses are transformed into fresher water, and how the properties of some of the water masses have changed in response to the atmospheric changes in recent years. The knowledge of the oceanic features in the Indonesian Seas is important not only for the current study of the ITF but also for future predictions in terms of physical conditions and biogeochemical signatures of the Indonesian Seas.

 Chapter 2 examines the effects of the high-frequency flow variability (HFFV) on the two main ITF routes. High-frequency flow defined in this study is the flow component that has a time scale of more than a day but shorter than a month. Comprehensively, the primary objective of this study is to quantify the effects of this HFFV on the pathways, transports, and in particular time scales of the ITF within the Indonesian archipelago. To achieve this goal, this study uses the daily and monthly fields of ocean model data set OFES2 (Ocean General Circulation Model for the Earth Simulator ver- sion 2) applied in a Lagrangian particle tracking experiment. The results of this study indicate that the Lagrangian particles capture the path of high-frequency activities in the daily fields in contrast to the monthly fields that show the straightforward path of particles. The particle’s movement due to the high-frequency activity generates a smaller number of particles (and transport) when crossing the particular seas. This study provides an important contribution to research on the small-time scale phenom- ena along the ITF by demonstrating the differences in the high-frequency flow between the western and eastern routes of ITF. The largest difference of kinetic energy between daily and monthly fields is found in the Sulawesi Sea, which indicates that the small- time scale activity is more pronounced in the western route of ITF. It is also shown that in the short time periods (2 years), the western route of ITF transfers Pacific water mainly to the thermocline in contrast to the eastern route that transfers the water from Pacific mainly to the intermediate layer. The time needed to fill the water mass in the Makassar Strait of the western route from the inflow of ITF in the Pacific Ocean is about ∼3 months. The similar time (∼3 months to ∼1 year) is also needed to fill the water mass in the Lifamatola Strait of the eastern route.

 Chapter 3 focuses on the water mass transformation in the thermocline where the high salinity Pacific water is eroded along the main routes of the ITF. The present study is designed to focus on the water masses in the Indonesian Seas especially in the thermocline. This study found that, generally, the erosion of high salinity water in the thermocline is the notable feature of the water mass transformation in each route of the ITF. Most of the regions in the Indonesian Seas experience high vertical mixing especially from the tidal mixing in some of the locations over the rough topography. During two years of tracking periods, the thermocline water that consists of high salinity water from the Pacific already transformed into the fresher characteristic. There is an erosion of North Pacific Tropical Water (NPTW) in the western route and South Pacific Subtropical Water (SPSW) in the eastern route. The erosion of this high salinity water in the western route occurs by mixing with surface water and the portion of intermediate water (North Pacific Intermediate Water/NPIW). In contrast, the erosion of high salinity water in the eastern route is mostly dominated by a mixing with surface water. Even though intermediate water has a much larger portion entering the eastern route, it does not mix significantly with thermocline water. The erosion of the high salinity water in each route of ITF is mostly dominated by the tidal mixing. Tidal mixing has a significant influence on changes in thermocline salinity where the salinity becomes fresher. The important locations of salinity changes in the western route are the entrance gate of ITF near the Mindanao Island, Labani Channel in the southern Makassar Strait, Flores Sea, and several locations before outflowing to the Indian Ocean. On the other hand, in the eastern route, the important locations of salinity transformation are in the entrance gate of ITF to the Halmahera Sea, Maluku Sea, Lifamatola Strait, and surrounding Seram Island.

 Chapter 4 analyzes the water mass trends in the inflow and outflow of ITF during 2004-2015. Based on the Argo data vertically gridded on the isopycnal coordinate, NPTW and SPSW in the inflow of ITF become saltier (warmer), and NPIW and Antarctic Intermediate Water/AAIW become fresher (cooler). In contrast, Indonesian Upper Water/IUW in the outflow of ITF become fresher (cooler), opposite to the salinification (warming) trend of Indonesian Intermediate Water/IIW. In addition, the water mass from the Indian Ocean also becomes saltier (warmer). In recent years, there is a negative trend of E − P (evaporation minus precipitation) in the maritime continent. This indicates that the Indonesian Seas receive large freshwater input from the atmosphere. This condition contributes to freshening of the IUW in the upper layer. On the other hand, in this study, the ocean process that contributes to the salinification of IIW is estimated by vertical mixing entirely. The salinification of Indian Ocean water contributes to the salinification of IIW, if it is assumed that there are negligible IIW changes in the Indonesian Seas.

 The two main routes of ITF from the Pacific Ocean have been known for more than a decade but poorly described in terms of their small-scale features such as the flow variability and mixing. The findings in this study enhance our understanding of the real ocean motion in the western and eastern routes of ITF by examining the small-scale flow. The transformation of the thermocline water in this study also provides information on how the contribution of water masses from the Pacific Ocean in each ITF routes generates isohaline pattern in the Indonesian Seas. Furthermore, by documenting and analyzing salinity variations in the tropical Indo-Pacific, this study contributed to understand how changes/variability in the hydrological cycle affects ocean environment. The findings of this study provide an important basis for a better understanding of the role of ITF in the climate system.

参考文献

[1] W. S. Broecker. The biggest chill : when ocean currents shifted, Europe suddenly got cold; could it happen again? American Museum of Natural History, New York, 1987.

[2] A. L. Gordon. Interocean exchange of thermocline water. Journal of Geophysical Research: Oceans, 91(C4):5037–5046, 1986.

[3] K. Wyrtki. Physical oceanography of Southeast Asian waters. Naga Report 2. 1961.

[4] C. Wang. Atmospheric Circulation Cells Associated with the El Niño-Southern Oscillation. Journal of Climate, 15(4):399–419, 2002.

[5] J. Sprintall and A. Revelard. The Indonesian Throughflow response to Indo-Pacific climate variability. Journal of Geophysical Research: Oceans, 119(2):1161–1175, 2014.

[6] T. Qu, Y. Du, J. Strachan, G. Meyers, and J. Slingo. Sea Surface Temperature and its Variability in the Indonesian Region. Oceanography, 18(4):50–61, 2005.

[7] T. Lee, I. Fukumori, D. Menemenlis, Z. Xing, and L.-L. Fu. Effects of the Indonesian Throughflow on the Pacific and Indian Oceans. Journal of Physical Oceanography, 32(5):1404–1429, 2002.

[8] M. Feng, J. Benthuysen, N. Zhang, and D. Slawinski. Freshening anomalies in the Indonesian Throughflow and impacts on the Leeuwin Current during 2010- 2011. Geophysical Research Letters, 42(20):8555–8562, 2015.

[9] D. Hu, L. Wu, W. Cai, A. S. Gupta, A. Ganachaud, B. Qiu, A. L. Gordon, X. Lin, Z. Chen, S. Hu, G. Wang, Q. Wang, J. Sprintall, T. Qu, Y. Kashino, F. Wang, and W. S. Kessler. Pacific western boundary currents and their roles in climate. Nature, 522(7556):299–308, 2015.

[10] J. Sprintall, A. L. Gordon, A. Koch-Larrouy, T. Lee, J. T. Potemra, K. Pujiana, and S. E. Wijffels. The Indonesian seas and their role in the coupled ocean- climate system. Nature Geoscience, 7(7):487–492, 2014.

[11] V. M. Kamenkovich, W. H. Burnett, A. L. Gordon, and G. L. Mellor. The Pacific/Indian Ocean pressure difference and its influence on the Indonesian Seas circulation: Part II-The study with specified sea-surface heights. Journal of Marine Research, 61(5):613–634, 2003.

[12] S.-K. Lee, W. Park, M. O. Baringer, A. L. Gordon, B. Huber, and Y. Liu. Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nature Geoscience, 8:445, 2015.

[13] A. J. Clarke and X. Liu. Interannual Sea Level in the Northern and Eastern Indian Ocean. Journal of Physical Oceanography, 24(6):1224–1235, 1994.

[14] G. Meyers. Variation of Indonesian Throughflow and the El Niño-Southern Oscillation. Journal of Geophysical Research: Oceans, 101(C5):12255–12263, 1996.

[15] J. Sprintall, A. L. Gordon, R. Murtugudde, and R. D. Susanto. A semiannual Indian Ocean forced Kelvin wave observed in the Indonesian seas in May 1997. Journal of Geophysical Research: Oceans, 105(C7):17217–17230, 2000.

[16] J. Sprintall, J. T. Potemra, S. L. Hautala, N. A. Bray, and W. W. Pandoe. Tem- perature and salinity variability in the exit passages of the Indonesian Through- flow. Deep Sea Research Part II: Topical Studies in Oceanography, 50(12):2183– 2204, 2003.

[17] J. Sprintall, S. E. Wijffels, R. Molcard, and I. Jaya. Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004-2006. Journal of Geo- physical Research: Oceans, 114(C7), 2009.

[18] R. D. Susanto, A. L. Gordon, J. Sprintall, and B. Herunadi. Intraseasonal vari- ability and tides in Makassar Strait. Geophysical Research Letters, 27(10):1499– 1502, 2000.

[19] S. Wijffels and G. Meyers. An Intersection of Oceanic Waveguides: Variabil- ity in the Indonesian Throughflow Region. Journal of Physical Oceanography, 34(5):1232–1253, 2004.

[20] A. L. Gordon, C. F. Giulivi, and A. G. Ilahude. Deep topographic barriers within the Indonesian seas. Deep Sea Research Part II: Topical Studies in Oceanography, 50(12):2205–2228, 2003.

[21] A. L. Gordon. Oceanography of the Indonesian Seas and Their Throughflow . Oceanography, 18, 2005.

[22] A. L. Gordon, B. A. Huber, E. J. Metzger, R. D. Susanto, H. E. Hurlburt, and T. R. Adi. South China Sea throughflow impact on the Indonesian Throughflow. Geophysical Research Letters, 39(11), 2012.

[23] R. D. Susanto, Z. Wei, R. T. Adi, B. Fan, S. Li, and G. Fang. Observations of the Karimata Strait througflow from December 2007 to November 2008. Acta Oceanologica Sinica, 32(5):1–6, 2013.

[24] A. L. Gordon, R. D. Susanto, and A. Ffield. Throughflow within Makassar Strait. Geophysical Research Letters, 26(21):3325–3328, 1999.

[25] A. G. Ilahude and A. L. Gordon. Thermocline stratification within the In- donesian Seas. Journal of Geophysical Research: Oceans, 101(C5):12401–12409, 1996.

[26] S. L. Hautala, J. L. Reid, and N. Bray. The distribution and mixing of Pacific water masses in the Indonesian Seas. Journal of Geophysical Research: Oceans, 101(C5):12375–12389, 1996.

[27] A. Koch-Larrouy, G. Madec, B. Blanke, and R. Molcard. Water mass trans- formation along the Indonesian Throughflow in an OGCM. Ocean Dynamics, 58(3):289–309, 2008.

[28] E. van Sebille, J. Sprintall, F. U. Schwarzkopf, A. Sen Gupta, A. Santoso, M. H. England, A. Biastoch, and C. W. Böning. Pacific-to-Indian Ocean connectivity: Tasman leakage, Indonesian Throughflow, and the role of ENSO. Journal of Geophysical Research: Oceans, 119(2):1365–1382, 2014.

[29] A. Ffield and A. L. Gordon. Vertical Mixing in the Indonesian Thermocline. Journal of Physical Oceanography, 22(2):184–195, 1992.

[30] A. Ffield and A. L. Gordon. Tidal Mixing Signatures in the Indonesian Seas. Journal of Physical Oceanography, 26(9):1924–1937, 1996.

[31] J. M. Waworuntu, R. A. Fine, D. B. Olson, and A. L. Gordon. Recipe for Banda Sea water. Journal of Marine Research,, 58:547–569, 2000.

[32] A. Koch-Larrouy, M. Lengaigne, P. Terray, G. Madec, and S. Masson. Tidal mixing in the Indonesian Seas and its effect on the tropical climate system. Climate Dynamics, 34(6):891–904, 2010.

[33] A. Koch-Larrouy, G. Madec, P. Bouruet-Aubertot, T. Gerkema, L. Bessieres, and R. Molcard. On the transformation of Pacific Water into Indonesian Throughflow Water by internal tidal mixing. Geophysical Research Letters, 34(4), 2007.

[34] Y. Du, Y. Zhang, and J. Shi. Relationship between sea surface salinity and ocean circulation and climate change. Science China Earth Sciences, 62(5):771–782, 2019.

[35] A. L. Gordon and R. D. Susanto. Banda Sea surface-layer divergence. Ocean Dynamics, 52(1):2–10, 2001.

[36] T. Nagai and T. Hibiya. Internal tides and associated vertical mixing in the Indonesian Archipelago. Journal of Geophysical Research: Oceans, 120(5):3373– 3390, 2015.

[37] W. J. Emery and J. Meincke. Global water masses: summary and review. Oceanologica Acta, 9:8, 1986.

[38] M. Fieux, C. Andrie, E. Charriaud, A. G. Ilahude, N. Metzl, R. Molcard, and J. C. Swallow. Hydrological and chlorofluoromethane measurements of the In- donesian Throughflow entering the Indian Ocean. Journal of Geophysical Re- search: Oceans, 101(C5):12433–12454, 1996.

[39] A. Gordon, M. Shubin, D. B. Olson, H. Peter, F. Amy, L. D. Talley, W. Dou- glas, and B. Molly. Advection and diffusion of Indonesian Throughflow Water within the Indian Ocean South Equatorial Current. Geophysical Research Let- ters, 24(21):2573–2576, 1997.

[40] A. Atmadipoera, R. Molcard, G. Madec, S. Wijffels, J. Sprintall, A. Koch- Larrouy, I. Jaya, and A. Supangat. Characteristics and variability of the In- donesian Throughflow water at the outflow straits. Deep Sea Research Part I: Oceanographic Research Papers, 56(11):1942–1954, 2009.

[41] D. Rochford. Hydrology of the Indian Ocean. II. The Surface Waters of the South-East Indian Ocean and Arafura Sea in the Spring and Summer. Marine and Freshwater Research, 13(3):226–251, 1962.

[42] A. J. Van Bennekom. Deep-water transit times in the eastern Indonesian basins, calculated from dissolved silica in deep and interstitial waters. Netherlands Jour- nal of Sea Research, 22(4):341–354, 1988.

[43] T. Z., G. Arnold, P. Jean-Baptiste, M. Fieux, G. Ilahude, and M. Muchtar. 3He in Indonesian Seas: Inferences on deep pathways. Geophysical Research Letters, 24(5):547–550, 1997.

[44] L. D. Talley and J. Sprintall. Deep expression of the Indonesian Throughflow: Indonesian Intermediate Water in the South Equatorial Current. Journal of Geophysical Research: Oceans, 110(C10), 2005.

[45] T. Miyama, T. Awaji, K. Akitomo, and N. Imasata. Study of seasonal transport variations in the Indonesian seas. Journal of Geophysical Research: Oceans, 100(C10):20517–20541, 1995.

[46] S. Wijffels, J. Sprintall, M. Fieux, and N. Bray. The JADE and WOCE I10/IR6 Throughflow sections in the southeast Indian Ocean. Part 1: water mass distribu- tion and variability. Deep Sea Research Part II: Topical Studies in Oceanography, 49(7):1341–1362, 2002.

[47] S. Kida, K. J. Richards, and H. Sasaki. The Fate of Surface Freshwater Entering the Indonesian Seas. Journal of Geophysical Research: Oceans, 124(5):3228– 3245, 2019.

[48] P. Delandmeter and E. van Sebille. The Parcels v2.0 Lagrangian framework: new field interpolation schemes. Geosci. Model Dev., 12(8):3571–3584, 2019.

[49] E. van Sebille, S. M. Griffies, R. Abernathey, T. P. Adams, P. Berloff, A. Bi- astoch, B. Blanke, E. P. Chassignet, Y. Cheng, C. J. Cotter, E. Deleersnijder, K. Döös, H. F. Drake, S. Drijfhout, S. F. Gary, A. W. Heemink, J. Kjellsson, I. M. Koszalka, M. Lange, C. Lique, G. A. MacGilchrist, R. Marsh, C. G. May- orga Adame, R. McAdam, F. Nencioli, C. B. Paris, M. D. Piggott, J. A. Polton, S. Ruhs, S. H. A. M. Shah, M. D. Thomas, J. Wang, P. J. Wolfram, L. Zanna, and J. D. Zika. Lagrangian ocean analysis: Fundamentals and practices. Ocean Modelling, 121:49–75, 2018.

[50] A. Grech, J. Wolter, R. Coles, L. McKenzie, M. Rasheed, C. Thomas, M. Way- cott, and E. Hanert. Spatial patterns of seagrass dispersal and settlement. Di- versity and Distributions, 22(11):1150–1162, 2016.

[51] L. C. M. Lebreton, S. D. Greer, and J. C. Borrero. Numerical modelling of floating debris in the world’s oceans. Marine Pollution Bulletin, 64(3):653–661, 2012.

[52] E. van Sebille, P. Scussolini, J. V. Durgadoo, F. J. C. Peeters, A. Biastoch, W. Weijer, C. Turney, C. B. Paris, and R. Zahn. Ocean currents generate large footprints in marine palaeoclimate proxies. Nature Communications, 6:6521, 2015.

[53] J. J. Monaghan. Smoothed particle hydrodynamics. Reports on Progress in Physics, 68(8):1703–1759, 2005.

[54] H. Sasaki, S. Kida, R. Furue, M. Nonaka, and Y. Masumoto. An Increase of the Indonesian Throughflow by Internal Tidal Mixing in a High-Resolution Quasi-Global Ocean Simulation. Geophysical Research Letters, 45(16):8416– 8424, 2018.

[55] Y. Masumoto, H. Sasaki, T. Kagimoto, N. Komori, A. Ishida, Y. Sasai, T. Miyama, T. Motoi, H. Mitsudera, K. Takahashi, H. Sakuma, and T. Yama- gata. A Fifty-Year Eddy-Resolving Simulation of the World Ocean - Preliminary Outcomes of OFES (OGCM for the Earth Simulator), volume 1. 2004.

[56] H. Sasaki, M. Nonaka, Y. Masumoto, Y. Sasai, H. Uehara, and H. Sakuma. An Eddy-Resolving Hindcast Simulation of the Quasiglobal Ocean from 1950 to 2003 on the Earth Simulator.

[57] S. Kobayashi, Y. Ota, Y. Harada, A. Ebita, M. Moriya, H. Onoda, K. Onogi, H. Kamahori, C. Kobayashi, H. Endo, K. Miyaoka, and K. Takahashi. The JRA- 55 Reanalysis: General Specifications and Basic Characteristics. Journal of the Meteorological Society of Japan. Ser. II, 93(1):5–48, 2015.

[58] H. Tsujino, S. Urakawa, H. Nakano, R. J. Small, W. M. Kim, S. G. Yea- ger, G. Danabasoglu, T. Suzuki, J. L. Bamber, M. Bentsen, C. W. Böning, A. Bozec, E. P. Chassignet, E. Curchitser, F. B. Dias, P. J. Durack, S. M. Griffies, Y. Harada, M. Ilicak, S. A. Josey, C. Kobayashi, S. Kobayashi, Y. Ko- muro, W. G. Large, J. L. Sommer, S. J. Marsland, S. Masina, M. Scheinert, H. Tomita, M. Valdivieso, and D. Yamazaki. JRA-55 based surface dataset for driving ocean-sea-ice models (JRA55-do). Ocean Modelling, 130:79 – 139, 2018.

[59] N. Komori, K. Takahashi, K. Komine, T. Motoi, X. Zhang, and G. Sagawa. Description of sea-ice component of Coupled Ocean-Sea-Ice Model for the Earth Simulator (OIFES). Journal of Earth Simulator, 4:31–45, 2005.

[60] Y. Noh and H. Jin Kim. Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near-surface process. Journal of Geophysical Research: Oceans, 104(C7):15621–15634, 1999.

[61] L. S. Laurent and C. Garrett. The Role of Internal Tides in Mixing the Deep Ocean. Journal of Physical Oceanography, 32(10):2882–2899, 2002.

[62] A. Rosati and K. Miyakoda. A General Circulation Model for Upper Ocean Simulation. Journal of Physical Oceanography, 18(11):1601–1626, 11 1988.

[63] W. G. Large and S. Yeager. Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. University Corporation for Atmospheric Research, 2004.

[64] W. G. Large, J. C. McWilliams, and S. C. Doney. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32(4):363–403, 1994.

[65] S. R. Jayne and L. C. St. Laurent. Parameterizing tidal dissipation over rough topography. Geophysical Research Letters, 28(5):811–814, 2001.

[66] L. Carrere, F. Lyard, M. Cancet, A. Guillot, and L. Roblou. FES 2012: A New Global Tidal Model Taking Advantage of Nearly 20 Years of Altimetry. In 20 Years of Progress in Radar Altimatry, volume 710 of ESA Special Publication, page 13, September 2013.

[67] Y. Tanaka, T. Hibiya, and Y. Niwa. Estimates of tidal energy dissipation and diapycnal diffusivity in the Kuril Straits using TOPEX/POSEIDON altimeter data. Journal of Geophysical Research: Oceans, 112(C10), 2007.

[68] M. Lange and E. van Sebille. Parcels v0.9: prototyping a Lagrangian ocean analysis framework for the petascale age. Geosci. Model Dev., 10(11):4175–4186, 2017.

[69] E. Sebille, M. H. England, J. D. Zika, and B. M. Sloyan. Tasman leakage in a fine-resolution ocean model. Geophysical Research Letters, 39(6), 2012.

[70] A. L. Gordon, R. D. Susanto, A. Ffield, B. A. Huber, W. Pranowo, and S. Wirasantosa. Makassar Strait throughflow, 2004 to 2006. Geophysical Re- search Letters, 35(24), 2008.

[71] H. M. van Aken, I. S. Brodjonegoro, and I. Jaya. The deep-water motion through the Lifamatola Passage and its contribution to the Indonesian Throughflow. Deep Sea Research Part I: Oceanographic Research Papers, 56(8):1203–1216, 2009.

[72] H. M. Van Aken, J. Punjanan, and S. Saimima. Physical aspects of the flushing of the east Indonesian basins. Netherlands Journal of Sea Research, 22(4):315– 339, 1988.

[73] Y. Masumoto, Y. Morioka, and H. Sasaki. High-Resolution Indian Ocean Simulations-Recent Advances and Issues from OFES. 2013.

[74] S. Kida and S. Wijffels. The impact of the Indonesian Throughflow and tidal mixing on the summertime sea surface temperature in the western Indonesian Seas. Journal of Geophysical Research: Oceans, 117(C9), 2012.

[75] V. Tamsitt, R. P. Abernathey, M. R. Mazloff, J. Wang, and L. D. Talley. Trans- formation of Deep Water Masses Along Lagrangian Upwelling Pathways in the Southern Ocean. Journal of Geophysical Research: Oceans, 123(3):1994–2017, 2018.

[76] IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Work- ing Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.

[77] I. M. Held and B. J. Soden. Robust Responses of the Hydrological Cycle to Global Warming. Journal of Climate, 19(21):5686–5699, 2006.

[78] C. Chou, J. D. Neelin, C.-A. Chen, and J. Y. Tu. Evaluating the "Rich-Get- Richer" Mechanism in Tropical Precipitation Change under Global Warming. Journal of Climate, 22(8):1982–2005, 2009.

[79] P. J. Durack, S. E. Wijffels, and R. J. Matear. Ocean Salinities Reveal Strong Global Water Cycle Intensification During 1950 to 2000. Science, 336(6080):455– 458, 2012.

[80] R. W. Schmitt. Salinity and the Global Water Cycle. Oceanography, 21, March 2008.

[81] R. Droghei, B. Buongiorno Nardelli, and R. Santoleri. A New Global Sea Sur- face Salinity and Density Dataset From Multivariate Observations (1993-2016). Frontiers in Marine Science, 5(84), 2018.

[82] Y. Du, Y. Zhang, and J. Shi. Relationship between sea surface salinity and ocean circulation and climate change. Science China Earth Sciences, 62(5):771–782, 2019.

[83] K. E. Trenberth, L. Smith, T. Qian, A. Dai, and J. Fasullo. Estimates of the Global Water Budget and Its Annual Cycle Using Observational and Model Data. Journal of Hydrometeorology, 8(4):758–769, 2007.

[84] G. Li, Y. Zhang, J. Xiao, X. Song, J. Abraham, L. Cheng, and J. Zhu. Examining the salinity change in the upper Pacific Ocean during the Argo period. Climate Dynamics, 53(9):6055–6074, 2019.

[85] T. P. Boyer, S. Levitus, J. I. Antonov, R. A. Locarnini, and H. E. Garcia. Linear trends in salinity for the World Ocean, 1955-1998. Geophysical Research Letters, 32(1), 2005.

[86] Y. Du, Y. Zhang, M. Feng, T. Wang, N. Zhang, and S. Wijffels. Decadal trends of the upper ocean salinity in the tropical Indo-Pacific since mid-1990s. Scientific Reports, 5:16050, 2015.

[87] S. Cravatte, T. Delcroix, D. Zhang, M. McPhaden, and J. Leloup. Observed freshening and warming of the western Pacific Warm Pool. Climate Dynamics, 33(4):565–589, 2009.

[88] S. Makarim, J. Sprintall, Z. Liu, W. Yu, A. Santoso, X.-H. Yan, and R. D. Su- santo. Previously unidentified Indonesian Throughflow pathways and freshening in the Indian Ocean during recent decades. Scientific Reports, 9(1):7364, 2019.

[89] G. A. Meehl, J. M. Arblaster, J. T. Fasullo, A. Hu, and K. E. Trenberth. Model- based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nature Climate Change, 1(7):360–364, 2011.

[90] M. H. England, S. McGregor, P. Spence, G. A. Meehl, A. Timmermann, W. Cai, A. S. Gupta, M. J. McPhaden, A. Purich, and A. Santoso. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Climate Change, 4(3):222–227, 2014.

[91] Y. Kosaka and S.-P. Xie. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501:403, 2013.

[92] S. Hosoda, T. Ohira, and T. Nakamura. A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. JAM- STEC Report of Research and Development, 8:47–59, 2008.

[93] D. Roemmich and J. Gilson. The 2004-2008 mean and annual cycle of temper- ature, salinity, and steric height in the global ocean from the Argo Program. Progress in Oceanography, 82(2):81–100, 2009.

[94] H. Akima. A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures. J. ACM, 17(4):589–602, 1970.

[95] D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Bel- jaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J. J. Morcrette, B. K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J. N. Thépaut, and F. Vitart. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656):553–597, 2011.

[96] N. L. Bindoff and T. J. Mcdougall. Diagnosing Climate Change and Ocean Venti- lation Using Hydrographic Data. Journal of Physical Oceanography, 24(6):1137– 1152, 1994.

[97] S. Häkkinen, P. B. Rhines, and D. L. Worthen. Warming of the Global Ocean: Spatial Structure and Water-Mass Trends. Journal of Climate, 29(13):4949– 4963, 2016.

[98] D. R. Jackett and T. J. McDougall. A Neutral Density Variable for the World’s Oceans. Journal of Physical Oceanography, 27(2):237–263, 1997.

[99] E. Prieto, C. González-Pola, A. Lavín, and N. P. Holliday. Interannual variability of the northwestern Iberia deep ocean: Response to large-scale North Atlantic forcing. Journal of Geophysical Research: Oceans, 120(2):832–847, 2015.

[100] S. L. Vaughan and R. L. Molinari. Temperature and Salinity Variability in the Deep Western Boundary Current. Journal of Physical Oceanography, 27(5):749– 761, 1997.

[101] G. A. Cannon. Tropical waters in the western Pacific Ocean, August-September 1957. Deep Sea Research and Oceanographic Abstracts, 13(6):1139–1148, 1966.

[102] T. Suga, A. Kato, and K. Hanawa. North Pacific Tropical Water: its climatology and temporal changes associated with the climate regime shift in the 1970s. Progress in Oceanography, 47(2):223–256, 2000.

[103] M. B. A. and S. Bulusu. Decadal changes in salinity in the oceanic subtropical gyres. Journal of Geophysical Research: Oceans, 122(1):336–354, 2017.

[104] E. Oka, S. Katsura, H. Inoue, A. Kojima, M. Kitamoto, T. Nakano, and T. Suga. Long-term change and variation of salinity in the western North Pacific sub- tropical gyre revealed by 50-year long observations along 137◦E. Journal of Oceanography, 73(4):479–490, 2017.

[105] X. Nie, S. Gao, F. Wang, and T. Qu. Subduction of North Pacific Tropical Water and its equatorward pathways as shown by a simulated passive tracer. Journal of Geophysical Research: Oceans, 121(12):8770–8786, 2016.

[106] C. S. Wong, R. J. Matear, H. J. Freeland, F. A. Whitney, and A. S. Bychkov. WOCE line P1W in the Sea of Okhotsk: 2. CFCs and the formation rate of intermediate water. Journal of Geophysical Research: Oceans, 103(C8):15625– 15642, 1998.

[107] A. Guillermo, K. J. P., and M. A. J. North Pacific Intermediate Water response to a modern climate warming shift. Journal of Geophysical Research: Oceans, 108(C11), 2003.

[108] T. Nakanowatari, H. Mitsudera, T. Motoi, I. Ishikawa, K. I. Ohshima, and M. Wakatsuchi. Multidecadal-Scale Freshening at the Salinity Minimum in the Western Part of North Pacific: Importance of Wind-Driven Cross-Gyre Trans- port of Subarctic Water to the Subtropical Gyre. Journal of Physical Oceanog- raphy, 45(4):988–1008, 2015.

[109] T. M. Joyce and J. Dunworth-Baker. Long-term hydrographic variability in the Northwest Pacific Ocean. Geophysical Research Letters, 30(2), 2003.

[110] S. Kouketsu, I. Kaneko, T. Kawano, H. Uchida, T. DOI, and M. Fukasawa. Changes of North Pacific Intermediate Water properties in the subtropical gyre. Geophysical Research Letters, 34(2), 2007.

[111] S. Hu and J. Sprintall. Interannual variability of the Indonesian Throughflow: The salinity effect. Journal of Geophysical Research: Oceans, 121(4):2596–2615, 2016.

[112] R. A. Locarnini, A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, M. M. Zweng, C. R. Paver, J. R. Reagan, D. R. Johnson, M. Hamilton, and D. Seidov. World Ocean Atlas 2013, Volume 1: Temperature. S. Levitus, Ed., A. Mishonov Technical Ed. NOAA Atlas NESDIS 73, 2013.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る