リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Isomerization and epimerization of glucose and galactose in arginine solution and phosphate buffer under subcritical fluid conditions」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Isomerization and epimerization of glucose and galactose in arginine solution and phosphate buffer under subcritical fluid conditions

Kobayashi, Takashi Khuwijitjaru, Pramote Adachi, Shuji 京都大学 DOI:10.1093/bbb/zbad047

2023.07

概要

Reaction of glucose or galactose was performed in arginine solution or phosphate buffer (pH 7.0) using a batch reactor at 110°C. The yields of products, pH, and absorbances at 280 and 420 nm were measured during the reaction. Fructose, mannose, and allulose were formed from glucose; tagatose, talose, and sorbose were done from galactose. The reaction proceeded more rapidly in arginine solution than in phosphate buffer. In arginine solution, yields of fructose and tagatose were 20% and 16%, respectively, after 30-min reaction; in phosphate buffer, they were 14% and 10%, respectively. However, in both reaction media, the pH drop and increase in absorbances continued even after the yield became almost constant. The absorbance increased particularly in the latter half of the reaction due to formation of browning products. Therefore, to avoid browning, the reaction should be stopped as soon as possible after the yield approaches its maximum value.

この論文で使われている画像

参考文献

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

Adachi S, Miyagawa Y, Khuwijitjaru P et al. Isomerization of maltose to maltulose in a pressurized

hot

phosphate

buffer.

Biocatal

Agric

Biotechnol.

2021:102164.

doi:

10.1016/j.bcab.2021.102164.

Antal MJ, Mok WSL, Richards GN. Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde

from d-fructose and sucrose. Carbohydr Res. 1990 1990/05/15/;199(1):91-109. doi:

10.1016/0008-6215(90)84096-D.

Baltes W. Application of pyrolytic methods in food chemistry. J Anal Appl Pyrolysis. 1985

1985/04/01/;8:533-45. doi: 10.1016/0165-2370(85)80050-4.

Bertelsen H, Jensen BB, Buemann B. D-Tagatose-a novel low-calorie bulk sweetener with prebiotic

properties. Low-Calories Sweeteners: Present and Future. 1999;85:98-109. doi:

10.1159/000059685.

Choudhary V, Pinar AB, Sandler SI et al. Xylose isomerization to xylulose and its dehydration to

furfural in aqueous media. ACS Catal. 2011;1(12):1724-28. doi: 10.1021/cs200461t.

Delidovich I. Toward understanding base-catalyzed isomerization of saccharides. ACS Catal. 2023

2023/01/28:2250-67. doi: 10.1021/acscatal.2c04786.

Dendene K, Guihard L, Nicolas S et al. Kinetics of lactose isomerisation to lactulose in an alkaline

medium. J Chem Technol Biotechnol. 1994;61(1):37-42. doi: 10.1002/jctb.280610106.

Doner LW. Isomerization of D-fructose by base: liquid-chromatographic evaluation and the isolation

of D-psicose. Carbohydr Res. 1979;70(2):209-16. doi: 10.1016/S0008-6215(00)87101-3.

Gao D-M, Kobayashi T, Adachi S. Kinetic analysis for the isomerization of glucose, fructose, and

mannose in subcritical aqueous ethanol. Biosci Biotechnol Biochem. 2015;79(6):1005-10.

doi: 10.1080/09168451.2014.1003129. PubMed PMID: 25608645.

Gao D-M, Kobayashi T, Adachi S. Production of rare sugars from common sugars in subcritical

aqueous ethanol. Food Chem. 2015 May 15;175:465-70. doi: 10.1016/j.foodchem.2014.11.144.

PubMed PMID: 25577107.

Gounder R, Davis ME. Monosaccharide and disaccharide isomerization over Lewis acid sites in

hydrophobic and hydrophilic molecular sieves. J Catal. 2013;308:176-88. doi:

10.1016/j.jcat.2013.06.016.

Granström TB, Takata G, Tokuda M et al. Izumoring: a novel and complete strategy for

bioproduction of rare sugars. J Biosci Bioeng. 2004;97(2):89-94. doi: 10.1016/S1389-

-14-

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

1723(04)70173-5.

Isbell H, Frush H, Wade C et al. Transformations of sugars in alkaline solutions. Carbohydr Res.

1969;9(2):163-75. doi: 10.1016/S0008-6215(00)82132-1.

Khuwijitjaru P, Adachi S. Isomerization of ribose to ribulose using basic amino acids as a catalyst.

Food Sci Technol Res. 2023:in press. . doi: 10.3136/fstr.FSTR-D-22-00215.

Kim J-S, Lee Y-S. Effect of reaction pH on enolization and racemization reactions of glucose and

fructose on heating with amino acid enantiomers and formation of melanoidins as result of

the Maillard reaction. Food Chem. 2008;108(2):582-92. doi: 10.1016/j.foodchem.2007.11.014.

Kumar S, Sharma S, Kansal SK et al. Efficient conversion of glucose into fructose via extractionassisted isomerization catalyzed by endogenous polyamine spermine in the aqueous phase.

ACS Omega. 2020;5(5):2406-18. doi: 10.1021/acsomega.9b03918.

Lamberts L, Rombouts I, Delcour JA. Study of nonenzymic browning in α-amino acid and γaminobutyric acid/sugar model systems. Food Chem. 2008;111(3):738-44. doi:

10.1016/j.foodchem.2008.04.051.

Levin GV. Tagatose, the new GRAS sweetener and health product. J Med Food. 2002;5(1):23-36.

doi: 10.1089/109662002753723197.

Lu J, Yan Y, Zhang Y et al. Microwave-assisted highly efficient transformation of ketose/aldose to

5-hydroxymethylfurfural (5-HMF) in a simple phosphate buffer system. RSC Adv.

2012;2(20):7652-55. doi: 10.1039/C2RA21011H

Mayumi S, Kuboniwa M, Sakanaka A et al. Potential of prebiotic D-tagatose for prevention of oral

disease. Front Cell Infect Microbiol. 2021:1082. doi: 10.3389/fcimb.2021.767944.

Milasing N, Khuwijitjaru P, Adachi S. Isomerization of galactose to tagatose using arginine as a

green catalyst. Food Chem. 2023;398:133858. doi: 10.1016/j.foodchem.2022.133858.

Namli S, Sumnu SG, Oztop MH. Microwave glycation of soy protein isolate with rare sugar (Dallulose), fructose and glucose. Food Biosci. 2021;40:100897. doi: 10.1016/j.fbio.2021.100897.

Onishi Y, Adachi S, Tani F et al. Insight into formation of various rare sugars in compressed hot

phosphate buffer. J Supercrit Fluids. 2022;186:105621. doi: 10.1016/j.supflu.2022.105621.

Onishi Y, Furushiro Y, Hirayama Y et al. Production of tagatose and talose through isomerization

of galactose in a buffer solution under subcritical water conditions. Carbohydr Res. 2020

2020/07/01/;493:108031. doi: 10.1016/j.carres.2020.108031.

Paravisini L, Prot A, Gouttefangeas C et al. Characterisation of the volatile fraction of aromatic

caramel using heart-cutting multidimensional gas chromatography. Food Chem. 2015

2015/01/15/;167:281-89. doi: 10.1016/j.foodchem.2014.06.101.

Parker K, Salas M, Nwosu VC. High fructose corn syrup: production, uses and public health

concerns. Biotechnol Mol Biol Rev. 2010;5(5):71-78. doi: 10.5897/BMBR2010.0009.

Roy S, Chikkerur J, Roy SC et al. Tagatose as a potential nutraceutical: Production, properties,

biological roles, and applications. J Food Sci. 2018;83(11):2699-709. doi: 10.1111/17503841.14358.

Shen Q, Yang R, Hua X et al. Enzymatic synthesis and identification of oligosaccharides obtained

by transgalactosylation of lactose in the presence of fructose using β-galactosidase from

Kluyveromyces

lactis.

Food

Chem.

2012;135(3):1547-54.

doi:

10.1016/j.foodchem.2012.05.115.

Shen S-C, Wu J. Maillard browning in ethanolic solution. J Food Sci. 2004;69(4):FCT273-FCT79.

doi: 10.1111/j.1365-2621.2004.tb06328.x.

Shukla R, Verykios XE, Mutharasan R. Isomerization and hydrolysis reactions of important

disaccharides over inorganic heterogeneous catalysts. Carbohydr Res. 1985;143:97-106. doi:

10.1016/S0008-6215(00)90699-2.

Soisangwan N, Khuwijitjaru P, Kobayashi T et al. Kinetic analysis of lactulose production from

lactose in subcritical aqueous ethanol. Food Sci Technol Res. 2017;23(1):45-49. doi:

10.3136/fstr.23.45.

Sowden JC, Schaffer R. The isomerization of D-glucose by alkali in D2O at 25°. J Am Chem Soc.

1952;74(2):505-07. doi: 10.1021/ja01122a065.

Sun Y, Hayakawa S, Ogawa M et al. Influence of a rare sugar, D-psicose, on the physicochemical

and functional properties of an aerated food system containing egg albumen. J Agric Food

Chem. 2008;56(12):4789-96. doi: 10.1021/jf800050d.

Usuki C, Kimura Y, Adachi S. Isomerization of hexoses in subcritical water. Food Sci Technol Res.

2007;13(3):205-09. doi: 10.3136/fstr.13.205.

Van Boekel M. Formation of flavour compounds in the Maillard reaction. Biotechnol Adv.

-15-

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

2006;24(2):230-33. doi: 10.1016/j.biotechadv.2005.11.004.

van Zandvoort I, van Eck ERH, de Peinder P et al. Full, reactive solubilization of humin byproducts

by alkaline treatment and characterization of the alkali-treated humins formed. ACS

Sustain Chem Eng. 2015 2015/03/02;3(3):533-43. doi: 10.1021/sc500772w.

van Zandvoort I, Wang Y, Rasrendra CB et al. Formation, molecular structure, and morphology of

humins in biomass conversion: Influence of feedstock and processing conditions.

ChemSusChem. 2013 2013/09/01;6(9):1745-58. doi: 10.1002/cssc.201300332.

Wu S, Du Y, Hu Y et al. Antioxidant and antimicrobial activity of xylan–chitooligomer–zinc complex.

Food Chem. 2013 2013/06/01/;138(2):1312-19. doi: 10.1016/j.foodchem.2012.10.118.

Wu S, Hu J, Wei L et al. Antioxidant and antimicrobial activity of Maillard reaction products from

xylan with chitosan/chitooligomer/glucosamine hydrochloride/taurine model systems. Food

Chem. 2014 2014/04/01/;148:196-203. doi: 10.1016/j.foodchem.2013.10.044.

Yang Q, Sherbahn M, Runge T. Basic amino acids as green catalysts for isomerization of glucose to

fructose

in

water.

ACS

Sustain

Chem

Eng.

2016;4(6):3526-34.

doi:

10.1021/acssuschemeng.6b00587.

Yaylayan VA, Kaminsky E. Isolation and structural analysis of Maillard polymers: caramel and

melanoidin formation in glycine/glucose model system. Food Chem. 1998

1998/09/01/;63(1):25-31. doi: 10.1016/S0308-8146(97)00237-9.

Yu X, Zhao M, Hu J et al. Correspondence analysis of antioxidant activity and UV–Vis absorbance

of Maillard reaction products as related to reactants. LWT - Food Sci Technol. 2012

2012/04/01/;46(1):1-9. doi: 10.1016/j.lwt.2011.11.010.

-16-

431

432

433

434

435

436

437

438

439

Figure 1. Time courses of the reaction of glucose under subcritical fluid conditions in (a)

440

arginine solution, (b) phosphate buffer, and (c) pure water; (a-1) Temperature (dashed curve) of

441

the reaction mixture, the remaining fraction of glucose (CGlc/CGlc,0; □), yields of fructose

442

(CFru/CGlc,0; ), mannose (CMan/CGlc,0; ◇), and allulose (CAll/CGlc,0; △), and pH (■); (a-2)

443

Absorbances at 280 nm (A280; ◇) and 420 nm (A420; ); (b-1) and (b-2) are the time courses

444

in phosphate buffer, and (c-1) and (c-2) are those in pure water. Symbols and bars indicate mean

445

and standard deviation, respectively (n = 3). The temperature of the reaction bath was set at

446

110°C. The solid curves smoothly connect the points.

447

448

-17-

449

450

451

452

453

454

455

456

457

Figure 2. Time courses of the reaction of galactose under subcritical fluid conditions in (a)

458

arginine solution, (b) phosphate buffer, and (c) pure water: (a-1) Temperature (dashed curve) of

459

the reaction mixture, the remaining fraction of galactose (CGal/CGal,0; □), yields of tagatose

460

(CTag/CGal,0; ), talose (CTal/CGal,0; ◇), and sorbose (CSor/CGal,0; △), and pH (■); (a-2)

461

Absorbances at 280 nm (A280; ◇) and 420 nm (A420; ); (b-1) and (b-2) are the time courses

462

in phosphate buffer, and (c-1) and (c-2) are those in pure water. Symbols and bars indicate mean

463

and standard deviation, respectively (n = 3). The temperature of the reaction bath was set at

464

110°C. The solid curves smoothly connect the points.

465

466

-18-

467

468

469

470

471

472

Figure 3. Relationship between the yields of formed sugars and pH of the reaction mixture in

473

arginine solution (closed symbols) or phosphate buffer (open symbols). (a) Relationship in the

474

glucose reaction for fructose (CFru/CGlc,0; , ), mannose (CMan/CGlc,0; ◆, ◇), and allulose

475

(CAll/CGlc,0; ▲, △). (b) Relationship in the galactose reaction between tagatose (CTag/CGal,0; ,

476

○), sorbose (CSor/CGal,0; ◆, ◇), and talose (CTal/CGal,0; ▲, △). Symbols and bars indicate

477

mean and standard deviation, respectively (n = 3). The pH was measured at room temperature.

478

The curved arrow in (a) indicates the direction of reaction progress.

-19-

479

480

481

482

Figure 4. Relationship between the yields of formed sugars and conversion of the substrate in

483

arginine solution (closed symbols) or phosphate buffer (open symbols). (a) Relationship in the

484

reaction of glucose for fructose (CFru/CGlc,0; , ○), mannose (CMan/CGlc,0; ◆, ◇), and

485

allulose (CAll/CGlc,0; ▲, △ ). (b) Relationship in the reaction of galactose for tagatose

486

(CTag/CGal,0; , ), sorbose (CSor/CGlc,0; ◆, ◇), and talose (CTal/CGlc,0; ▲, △). Symbols and

487

bars indicate mean and standard deviation (n = 3).

-20-

488

489

490

491

492

Figure 5. Relationship between the absorbances at 280 nm and 420 nm during the isomerization

493

of glucose (, ) and galactose (▲, △) in arginine solution (closed symbols) or phosphate

494

buffer (open symbols) at approximately 110°C. Symbols and bars indicate mean and standard

495

deviation, respectively (n = 3).

496

497

-21-

498

499

500

501

502

503

504

505

506

Figure 6. Relationship between the yields of fructose (, ) and tagatose (▲, △) and

507

absorbance of the reaction mixture at 420 nm in arginine solution (closed symbols) or phosphate

508

buffer (open symbols). Symbols and bars indicate mean and standard deviation, respectively (n

509

= 3).

510

511

512

-22-

513

514

515

516

517

518

519

520

521

522

Graphical abstract caption

523

Isomerization of hexoses in arginine solution and phosphate buffer under subcritical condition

-23-

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る