リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「High detection sensitivity and reliable morphological correlation of PET with a silicon photomultiplier for primary tongue squamous cell carcinoma」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

High detection sensitivity and reliable morphological correlation of PET with a silicon photomultiplier for primary tongue squamous cell carcinoma

Ikuho Kojima Kentaro Takanami Takenori Ogawa Maya Sakamoto Hirokazu Nagai Hitoshi Miyashita Masahiro Iikubo 東北大学 DOI:10.1007/s12149-020-01489-0

2020.09.01

概要

Objective: A positron emission tomography (PET) scanner using a silicon photomultiplier (SiPM PET) in place of a photomultiplier tube significantly improves the spatial and time resolution. It may also improve the evaluation of smaller lesions compared to conventional (non-SiPM) PET scanners. We compared the maximum standardized uptake value (SUVmax), detection sensitivity, and morphological correlation using magnetic resonance imaging (MRI) for primary tongue squamous cell carcinoma between the SiPM PET and non-SiPM PET scanner.

Methods: We retrospectively reviewed the F-18 fluorodeoxyglucose (FDG) PET/CT features of tongue squamous cell carcinomas in consecutive, newly diagnosed, and pathologically verified patients. Twenty-five of 46 patients were scanned using SiPM PET scanner and the remaining 21 patients were scanned with a non-SiPM PET scanner. We compared the SUVmax and visual evaluation of primary tumor detectability, and the correlation between the PET-based and MRI-based tumor size (long axis, thickness, and volume). Differences in SUVmax and detection sensitivity for the primary tumor were analyzed using Welch’s t -test and Fisher’s exact test, respectively. Correlations among the PET-based, MRI-based tumor size, and SUVmax were assessed using Spearman’s rank correlation coefficient.

Results: SUVmax of both T1/T2 and T3/T4 primary tumors were significantly higher for the SiPM PET (T1/T2 mean SUVmax: 6.6 ± 4.3, T3/T4 mean SUVmax: 18.2 ± 9.8) than that for the non-SiPM PET (T1/T2 mean SUVmax: 3.4 ± 1.4, T3/T4 mean SUVmax: 10.2 ± 4.9) (P < 0.05). While all cases of T3/T4 primary tumors were detected by both PET scanners, the detection sensitivity for T1/T2 primary tumors was significantly higher for the SiPM PET (80%) than that for the non-SiPM PET (36.4%) (P < 0.05). MRI-based tumor size correlated significantly with SiPM PET-based tumor long axis (ρ = 0.74) and volume (ρ = 0.91), but not with the non-SiPM PET-based tumor long axis and volume in T1/T2 primary lesions. Correlation between MRI-based tumor size and SUVmax was significant in both PET scanners; however, no significant difference was observed between the two scanners.

Conclusions : The SiPM PET provides better detection sensitivity and a reliable morphological correlation for the T1/T2 primary tongue tumors than the non-SiPM PET due to its high performance.

この論文で使われている画像

関連論文

参考文献

1. Kunkel M, Forster GJ, Reichert TE, Jeong JH, Benz P, Bartenstein P, et al. Detection of recurrent oral squamous cell carcinoma by [18F]-2-fluorodeoxyglucosepositron emission tomography: implications for prognosis and patient management. Cancer 2003;98(10):2257-65.

2. Rege S, Safa AA, Chaiken L, Hoh C, Juillard G, Withers HR. Positron emission tomography: an independent indicator of radiocurability in head and neck carcinomas. Am J Clin Oncol 2000;23(2):164-9.

3. Dibble EH, Alvarez AC, Truong MT, Mercier G, Cook EF, Subramaniam RM. 18F-FDG metabolic tumor volume and total glycolytic activity of oral cavity and oropharyngeal squamous cell cancer: adding value to clinical staging. J Nucl Med 2012;53(5):709-15.

4. Avril NE, Weber WA. Monitoring response to treatment in patients utilizing PET. Radiol Clin North Am 2005;43(1):189-204.

5. Doi H, Kitajima K, Fukushima K, Kawanaka Y, Mouri M, Yamamoto S, et al. SUVmax on FDG-PET is a predictor of prognosis in patients with maxillary sinus cancer. Jpn J Radiol 2016;34(5):349-55.

6. Oyama T, Hosokawa Y, Abe K, Hasegawa K, Fukui R, Aoki M, et al. Prognostic value of quantitative FDG-PET in the prediction of survival and local recurrence for patients with advanced oral cancer treated with superselective intraarterial chemoradiotherapy. Oncol Lett. 2020;19(6): 3775–80.

7. Shimizu M, Mitsudo K, Koike I, Taguri M, Iwai T, Koizumi T, et al. Prognostic value of 2-[(18) F]fluoro-2-deoxy-D-glucose positron emission tomography for patients with oral squamous cell carcinoma treated with retrograde superselective intra-arterial chemotherapy and daily concurrent radiotherapy. Oral Surg Oral Med Oral Pathol Oral Radiol 2016;121(3):239-47.

8. Leung TW, Wong VY, Kwan KH, Ng TY, Wong CM, Tung SY et al. High dose rate brachytherapy for early stage oral tongue cancer. Head Neck 2002;24(3):274-81.

9. Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med 2007;48(6):932-45.

10. Teo BK, Seo Y, Bacharach SL, Carrasquillo JA, Libutti SK, Shukla H, et al. Partial-volume correction in PET: validation of an iterative postreconstruction method with phantom and patient data. J Nucl Med 2007;48(5):802-10.

11. Roncali E, Cherry SR. Application of silicon photomultipliers to positron emission tomography. Ann Biomed Eng 2011;39(4):1358-77.

12. Teoh EJ, McGowan DR, Macpherson RE, Bradley KM, Gleeson FV. Phantom and Clinical Evaluation of the Bayesian Penalized Likelihood Reconstruction Algorithm Q.Clear on an LYSO PET/CT System. J Nucl Med 2015;56(9):1447-52.

13. Baratto L, Park SY, Hatami N, Davidzon G, Srinivas S, Gambhir SS, et al. 18FFDG silicon photomultiplier PET/CT: A pilot study comparing semi-quantitative measurements with standard PET/CT. PLoS One 2017;12(6):e0178936.

14. Brierley J, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumours. Eighth edition. ed. Chichester, West Sussex, UK ; Hoboken, NJ: John Wiley & Sons, Inc.; 2017;p.17-21.

15. Jakobsson PA, Eneroth CM, Killander D, Moberger G, Martensson B. Histologic classification and grading of malignancy in carcinoma of the larynx. Acta Radiol Ther Phys Biol 1973;12(1):1-8.

16. Yamamoto E, Kohama G, Sunakawa H, Iwai M, Hiratsuka H. Mode of invasion, bleomycin sensitivity, and clinical course in squamous cell carcinoma of the oral cavity. Cancer 1983;51(12):2175-80.

17. Pindborg JJ. Reichart PA, Smith CJ, van der Waal I. Histological Typing of Cancer and Precancer of the Oral Mucosa. WHO; 1997.

18. Kojima I, Sakamoto M, Iikubo M, Kumamoto H, Muroi A, Sugawara Y, et al. Diagnostic performance of MR imaging of three major salivary glands for Sjogren's syndrome. Oral Dis 2017;23(1):84-90.

19. Yamazaki Y, Saitoh M, Notani K, Tei K, Totsuka Y, Takinami S, et al. Assessment of cervical lymph node metastases using FDG-PET in patients with head and neck cancer. Ann Nucl Med 2008;22(3):177-84.

20. Yu HM, Liu YF, Hou M, Liu J, Li XN, Yu JM. Evaluation of gross tumor size using CT, 18F-FDG PET, integrated 18F-FDG PET/CT and pathological analysis in non-small cell lung cancer. Eur J Radiol 2009;72(1):104-13

21. Koopman D, van Dalen JA, Stevens H, Slump CH, Knollema S, Jager PL. Performance of digital PET compared to high-resolution conventional PET in patients with cancer. J Nucl Med 2020.

22. Nguyen NC, Vercher-Conejero JL, Sattar A, Miller MA, Maniawski PJ, Jordan DW, et al. Image Quality and Diagnostic Performance of a Digital PET Prototype in Patients with Oncologic Diseases: Initial Experience and Comparison with Analog PET J Nucl Med 2015; 56(9):1378-85.

23. Goerres GW, Hany TF, Kamel E, von Schulthess GK, Buck A. Head and neck imaging with PET and PET/CT: artefacts from dental metallic implants. Eur J Nucl Med Mol Imaging 2002;29(3):367-70.

24. Kinahan PE, Hasegawa BH, Beyer T. X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med 2003;33(3):166-79.

25. Shimamoto H, Kakimoto N, Fujino K, Hamada S, Shimosegawa E, Murakami S, et al. Metallic artifacts caused by dental metal prostheses on PET images: a PET/CT phantom study using different PET/CT scanners. Ann Nucl Med 2009;23(5):443-9.

26. Suzuki A, Ito M, Kawai Y. Dentures wearing reduce motion artifacts related to tongue movement in magnetic resonance imaging. J Prosthodont Res 2018;62(3):303-8.

27. Lwin CT, Hanlon R, Lowe D, Brown JS, Woolgar JA, Triantafyllou A, et al. Accuracy of MRI in prediction of tumour thickness and nodal stage in oral squamous cell carcinoma. Oral Oncol 2012;48(2):149-54.

28. Goel V, Parihar PS, Parihar A, Goel AK, Waghwani K, Gupta R, et al. Accuracy of MRI in Prediction of Tumour Thickness and Nodal Stage in Oral Tongue and Gingivobuccal Cancer With Clinical Correlation and Staging. J Clin Diagn Res 2016;10(6):TC01-5.

29. Iwai H, Kyomoto R, Ha-Kawa SK, Lee S, Yamashita T. Magnetic resonance determination of tumor thickness as predictive factor of cervical metastasis in oral tongue carcinoma. Laryngoscope 2002;112(3):457-61.

30. Preda L, Chiesa F, Calabrese L, Latronico A, Bruschini R, Leon ME, et al. Relationship between histologic thickness of tongue carcinoma and thickness estimated from preoperative MRI. European radiology 2006;16(10):2242-8.

31. Jung J, Cho NH, Kim J, Choi EC, Lee SY, Byeon HK, et al. Significant invasion depth of early oral tongue cancer originated from the lateral border to predict regional metastases and prognosis. Int J Oral Maxillofac Surg 2009;38(6):653-60.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る