リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Potato Plants under Drought, Heat, and Combined Drought-Heat Stress : Morpho-Physiological and Molecular Responses」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Potato Plants under Drought, Heat, and Combined Drought-Heat Stress : Morpho-Physiological and Molecular Responses

トゥリ, ハンダヤニ 筑波大学 DOI:10.15068/0000055072

2020.07.22

概要

Abiotic stress is the most limiting factor in crop yields, as it interferes with crop growth and development. Drought stress and heat stress are the major abiotic stresses hampering world food production. The intensity and distribution of drought and heat stress are becoming more severe with the present climate changes. The increasing average global temperature triggers the uprise of heat stress event, and the decreasing annual mean precipitation in some mid-latitude and sub-tropical regions leads to water deficit. Even more critical is when drought and heat stress occur together in nature. Potato (Solanum tuberosum L.) is the third most important food crop in the world. Although potatoes are grown worldwide over wide agro- climatic zones in various environments and seasons, potato plants require specific physiological conditions for growth and tuber production. High temperatures and water deficits have become the most serious constraints for potato production. Several research groups have examined the effects of drought stress or heat damage on potato, but few investigations of the effects of combined drought-heat stress have been reported. As an addition to the cultivated potato that is sensitive to abiotic stress, the genetic potato resources comprised of landraces and wild potato relatives (which could contribute to tolerance to a range of abiotic stress) have not been well studied.

Using diploid breeding lines and a tetraploid commercial potato, I studied how these potatoes respond to drought stress, to heat stress, and to a combination of drought and heat stress. The diploid breeding lines have various landraces and wild relatives' genetic backgrounds. The morphological and physiological responses of potatoes to PEG-induced drought stress, heat stress, and combined drought-heat stress are presented in Chapter 2. Abiotic stress-related traits were evaluated in a growth-room environment under non-stress and abiotic stress treatments, and the results demonstrated that all of the potato lines responded to the drought and combined drought-heat stress by reducing their plant height. In contrast, the potato lines' responses to the effect of heat stress on plant height differed; some heights increased while others decreased. The leaf size in all of the potato lines became smaller under drought, heat stress, and combined drought-heat stress compared to the non-stress condition. The potato plants responded to the drought stress and combined drought-heat stress by increasing their chlorophyll content and decreasing their relative water content (RWC). A decrease in water content related to wilting symptoms was observed under drought stress and under combined drought-heat stress. The potato line L1 (84.194.30) showed the lowest level of wilting in all three types of abiotic stress, supported by a small RWC change compared to the control condition; L1 is thus considered relatively tolerant to abiotic stress.

Several plant transcription factors (TFs) and genes are induced by abiotic stress and have substantial roles in improving the abiotic stress tolerance of plants. My evaluation of the expression levels of the abiotic stress-related genes StCEL, StTAS14, StnsLTP1, and StHSP70 under drought, heat, and combined drought-heat stress is discussed in Chapter 3. The gene expression levels were examined by a reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Samples were taken from potato plants under polyethylene glycol (PEG)-induced drought stress, heat stress, and combined drought-heat stress in a growth room. The results showed that the abiotic stresses induced various levels of the expressions of StCEL, StTAS14, StnsLTP1, and StHSP70 in the potato plants. Generally, the combined drought-heat stress induced the highest expression levels of the tested abiotic stress- related genes. Under the different abiotic stresses, the potato lines showed different patterns of StCEL and StnsLTP1 expression levels.

Chapter 4 provides a general discussion. The potato lines' different responses to each type of abiotic stress indicates that the potato lines have different levels of sensitivity or tolerance to each abiotic stress. The potato lines can thus be used in other studies and in abiotic stress breeding programs. The simple abiotic stress- related traits described herein could be used to reliably differentiate stress-tolerant and stress-susceptible potato lines. The application of these traits will be helpful in screenings that involve a large number of accessions. The present findings also indicate that the expression levels of StCEL, StTAS14, StnsLTP1, and StHSP70 might be associated with different sensitivity or tolerance of potato lines in response to abiotic stress. More extensive investigations are thus necessary to further clarify the roles of these genes, particularly under combined drought-heat stress. The correlations between gene expression level and abiotic stress-related traits can be a consideration in the utilization the genes or the traits over diploid potato lines in future studies in 4x × 2x crosses to transfer genetic attributes.

この論文で使われている画像

参考文献

Ahmadi, S.H., M. Agharezaee, A.A. Kamgar-Haghighi, A.R. Sepaskhah and M. Goss (2017) Compatibility of root growth and tuber production of potato cultivars with dynamic and static water-saving irrigation managements. Soil Use Manag. 33: 106-119.

Aien, A., S. Khetarpal and M. Pal (2011) Photosynthetic characteristics of potato cultivars grown under high temperature. Amer-Eurasian J. Agric. Environ. Sci. 11: 633-639.

Aien, A., A.K. Chaturdevy, R.N. Bahuguna and M. Pal (2016) Phenological sensitivity to high temperature stress determines dry matter partitioning and yield in potato. Ind.J. Plant Physiol. 22: 63-69.

Albiski, F., S. Najla, R. Sanoubar, N. Alkabani and R. Murshed (2012) In vitro screening of potato lines for drought tolerance. Physiol. Mol. Biol. Plants 18: 315-321.

Alhainthloul, H.A.S. (2019) Impact of combined heat and drought stress on the potential growth responses of the dessert grass Artemisia sieberi alba: Relation to biochemical and molecular adaptation. Plants 8: 416.

Aliche, E.B., M. Oortwijn, T.P.J.M. Theeuwen, C.W.B. Bachem, R.G.F. Visser and C.G. van der Linden (2018) Drought response in field grown potatoes and the interactions between canopy growth and yield. Agric. Water Manag. 206: 20-30.

Andjelkovic, V. (2018) Introductory Chapter: Climate Changes and Abiotic Stress in Plants. In: Plant, Abiotic Stress and Response to Climate Change, IntechOpen. doi: 10.5772/intechopen.76102.

Anithakumari, A.M., K.N. Nataraja, R.G. Visser and C.G. van der Linden (2012) Genetic dissection of drought tolerance and recovery potential by quantitative trait locus mapping of a diploid potato population. Mol. Breed. 30: 1413-1429.

Arvin, M.J. and D.J. Donnelly (2008) Screening potato cultivars and wild species to abiotic stresses using an electrolyte leakage bioassay. J. Agric. Sci. Technol. 10: 33-42.

Asseng, S., F. Ewert, P. Martre, R.P. Rötter, D.B. Lobell, D. Cammarano, B.A. Kimball,M.J. Ottman, G.W. Wall, J.W. White, et al. (2014) Rising temperatures reduce global wheat production. Nat. Clim. Change 5: 143-147.

Asthir, B. (2015a) Mechanisms of heat tolerance in crop plants. Biol. Plant. 59: 620-628.

Asthir, B. (2015b) Protective mechanisms of heat tolerance in crop plants. J. Plant Interact. 10: 202-210.

Baniwal, S.K., K. Bharti, K.Y. Chan, M. Fauth, A. Ganguli, S. Kotak, S.K. Mishra, L. Nover, M. Port, K.D. Scharf, et al. (2004) Heat stress response in plants: A complex game with chaperones and more than twenty heat stress transcription factors. J. Biosci. 29: 471-487.

Banks, E. and M. VanOostrum (2016) The impact of heat and drought on the 2016 Ontario potato crop. At: http://spudmart.com/impact-heat-drought-2016-ontario-potato- crop/.

Barkla, B.J. and O. Pantoja (2011) Plasma membrane and abiotic stress. In: Murphy, S., B. Schulz and W. peer (eds.) The Plant Plasma Membrane. Plant Cell Monograph 19, Heidelberg, pp. 457-470.

Barnabas, B., K. Jager and A. Feher (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 31: 11-38.

Basu, S., V. Ramegowda, A. Kumar and A. Pereira (2016) Plant adaptation to drought stress. F1000Research 5 (F1000 Faculty Rev): 1554. doi: 10.12688/f1000research.7681.1.

Benavides, M.A.G., L. Diaz, G. Burgos, T.Z. Felde and M. Bonierbale (2017) Heritability for yield and glycoalkaloid content in potato breeding under warm environments. Open Agric. 2.

Benites, F.R.G. and C.A.B.P. Pinto (2011) Genetic gains for heat tolerance in potato in three cycles of recurrent selection. Crop Breed. Appl. Biotechnol. 11: 133-140.

Berry, J. and O. Bjorkman (1980) Photosynthetic response and adaptation to temperature in higher plants. Ann. Rev. Plant Physiol. 31: 491-543.

Bidani, A., O. Nouri-Ellouz, L. Lakhoua, D. Sihachakr, C. Cheniclet, A. Mahjoub, N. Drira and R. Gargouri-Bouzid (2007) Interspecific potato somatic hybrids between Solanum berthaultii and Solanum tuberosum L. showed recombinant plastome and improved tolerance to salinity. Plant Cell Tissue Organ Cult. 91: 179-189.

Birch, P.R.J., G. Bryan, B. Fenton, E.M. Gilroy, I. Hein, J.T. Jones, A. Prashar, M.A. Taylor, L. Torrance and I.K. Toth (2012) Crops that feed the world 8: Potato: Are the trends of increased global production sustainable? Food Sec. 4: 477-508.

Blum, A. (2005) Drought resistance, water-use efficiency, and yield potential—Are they compatible, dissonant, or mutually exclusive? Aus. J. Agric. Res. 56: 1159-1168.

Bohnert, H.J. (2007) Abiotic Stress. In: Encyclopedia of Life Sciences (eLS). Chichester, John Wiley & Sons Ltd. doi.org/10.1002/9780470015902.a0020087.

Bradeen, J.M. and K.G. Haynes (2017) Introduction to Potato. In: Bradeen, J.M. and C. Kole (eds.) Genetics, Genomics and Breeding of Potato, CRC Press, Boca Raton,pp. 1-19.

Bray, E.A. (2007) Plant response to water-deficit stress. In: Encyclopedia of Life Sciences (eLS). Chichester, John Wiley & Sons Ltd. doi: 10.1002/9780470015902.a001298.pub2.

Bundy, M.G., O.A. Thompson, M.T. Sieger and E.D. Shpak (2012) Patterns of cell division, cell differentiation and cell elongation in epidermis and cortex of Arabidopsis pedicels in the wild type and in erecta. PLoS ONE 7: e46262.

Carvalho, A.O. and V.M. Gomes (2007) Role of plant lipid transfer proteins in plant cell physiology – A concise review. Peptides 28: 1144-1153.

Chen, S., J. Li, E. Fritz, S. Wang and A. Huttermann (2002) Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress. Forest Ecol. Manag. 168: 217-230.

Coleman, W.K. (2008) Evaluation of wild Solanum species for drought resistance 1.Solanum gandarillasii Cardenas. Environ. Exp. Bot. 62: 221-230.

Cramer, G.R., K. Urano, S. Delrot, M. Pezzotti and K. Shinozaki (2011) Effects of abiotic stress on plants: A systems biology perspective. BMC Plant Biol. 11: 163.

Cutler, J.M., D.W. Rains and R.S. Loomis (1977) The importance of cell size in the water relations of plants. Physiol. Plant 40: 255-260.

Daccache, A., C. Keay, R.J.A. Jones, E.K. Weatherhead, M.A. Stalham and J.W. Knox (2012) Climate change and land suitability for potato production in England and Wales: impacts and adaptation. J. Agric. Sci. 150: 161-177.

Dai, A. (2013) The increased risk of drought under global warming. At: https://wunderground.com/EarthWeek/2013/increased-risk-on-drought-under- global-warming/.

Daryanto, S., L. Wang and P.A. Jacinthe (2016) Global synthesis of drought effects on maize and wheat production. PLoS ONE 11: e0156362.

De Micco, V. and G. Aronne (2012) Morpho-anatomical traits for plant adaptation to drought. In: Aroca (ed.) Plant Responses to Drought Stress. From Morphological to Molecular Features, Springer-Verlag Berlin Heidelberg, pp. 37-621

Deblonde, P.M.K. and J.F. Ledent (2001) Effects of moderate drought conditions on green leaf number, stem height, leaf length and tuber yield of potato cultivars. Eur. J. Agron. 13: 31-41.

Dosio, A., L. Mentaschi, E.M. Fischer and K. Wyser (2018) Extreme heat waves under1.5°C and 2°C global warming. Environ. Res. Lett. 13: 054006.

Dou, H., K. Xv, Q. Meng, G. Li and X. Yang (2014) Potato plants ectopically expressing Arabidopsis thaliana CBF3 exhibit enhanced tolerance to high-temperature stress. Plant Cell Environ. 38: 61-72.

Drapal, M., E.R. Farfan-Vignolo, O.R. Gutierrez, M. Bonierbale, E. Mihovilovich and P.D. Fraser (2017) Identification of metabolites associated with water stress responses in Solanum tuberosum L. clones. Phytochemistry 135: 24-33.

Dreesen, F.E., H.J. De Boeck, I.A. Janssens and I. Nijs (2012) Summer heat and drought extremes trigger unexpected changes in productivity of a temperate annual/biannual plant community. Environ. Exp. Bot. 79: 21-30.

Dwivedi, S.L., S. Ceccarelli, M.W. Blair, H.D. Upadhaya, A.K. Are and R. Ortiz (2016) Landrace germplasm for improving yield and abiotic stress adaptation. Trends Plant Sci. 21: 31-42.

Ekanayake, I.J. (1989) Studying drought stress and irrigation requirements of potatoes.CIP Research Guide 30. International Potato Center, Lima, Peru. p. 40.

Endo, T. (2016) Screening and characterization of DNA binding factor interacting with abiotic stress responsive promoter in potato (unpublished Masters Thesis).Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.

Engelbrecht, B.M.J., M.T. Tyree and T.A. Kursar (2007) Visual assessment of wilting as a measure of leaf water potential and seedling drought survival. J. Trop. Ecol. 23: 497-500.

Ewing, E.E. (1981) Heat stress and the tuberization stimulus. Am. Potato J. 58: 31-49.

Fahad, S., A.A. Bajwa, U. Nazir, S.A. Anjum, A. Farooq, A. Zohaib, S. Sadia, W. Nasim,S. Adkins, S. Saud, et al. (2017) Crop production under drought and heat stress: Plant responses and management options. Front. Plant Sci. 8: 1147.FAO (2019) Food and Agricultural Organization of the United Nations, FAO Statistical Database. At: http://www.fao.org/faostat/en/#data/QC.

Farooq, M., A. Wahid, N. Kobayashi, D. Fujita and S.M.A. Basra (2009) Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 29: 185-212.

Fleisher, D.H., D.J. Timlin and V.R. Reddy (2006) Temperature influence on potato leaf and branch distribution and on canopy photosynthetic rate. Agron. J. 98: 1442- 1452.

Gangadhar, B.H., J.W. Yu, K. Sajeesh and S.W. Park (2014) A systematic exploration of high-temperature stress-responsive genes in potato using large-scale yeast functional screening. Mol. Genet. Genomics 289: 185-201.

Gangadhar, B.H., K. Sajeesh, J. Venkatesh, V. Baskar, K. Abhinandan, J.W. Ru, R. Prasad and R.K. Mishra (2016) Enhanced tolerance of transgenic potato plants over- expressing non-specific lipid transfer protein-1 (nsLTP1) against multiple abiotic stresses. Front. Plant Sci. 7: 1228.

Gautney, T.L. and F.L. Haynes (1983) Recurrent selection for heat tolerance in diploid potatoes (Solanum tubersoum Subsp. phureja and stenotomum). Am. Potato J. 60: 537-542.

Ghosh, S.C., K. Asanuma, A. Kusutani and M. Toyota (2000) Effects of temperature at different growth stages on nonstructural carbohydrate, nitrate reductase activity and yield of potato. Environ. Cont. Biol. 38: 197-206.

Guidi, L., E. Lo Piccolo and M. Landi (2019) Chlorophyll fluorescence, photoinhibition and abiotic stress: Does it make any difference the fact to be a C3 or C4 species? Front. Plant Sci. 10: 174.

Gururani, M.A., J. Venkatesh and L.S. Tran (2015) Regulation of photosynthesis during abiotic stress-induced photoinhibition. Mol. Plant 8: 1304-1320.

Hanin, M., F. Brini, C. Ebel, Y. Toda, S. Takeda, and K. Masmoudi (2011) Plant dehydrins and stress tolerance, versatile proteins for complex mechanisms. Plant Signal. Behav. 6: 1503-1509.

Harrell, F.E. (2019) Hmisc: Harrell miscellaneous. R package version 4.2-0.

Hasanuzzaman, M., K. Nahar, M.M. Alam, R. Roychowdhury and M. Fujita (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 14: 9643-9684.

Havaux, M. (1995) Temperature sensitivity of the photochemical function of photosynthesis in potato (Solanum tuberosum) and a cultivated Andean hybrid (Solanum X juzepczukii). J. Plant Physiol. 146: 47-53.

Hawkes, J.G. (1994) Origins of cultivated potatoes and species relationships. In: Bradshaw, J.E. and G.R. Mckay (eds.) Potato Genetics, CAB International, Wallingford, UK, pp. 3-42.

Hetherington, S.E., R.M. Smillie, P. Malagamba and Z. Huaman (1983) Heat tolerance and cold tolerance of cultivated potatoes measured by the chlorophyll-fluorescence method. Planta 159: 119-124.

Hijmans, R.J. (2001) Global distribution of the potato crop. Am. J. Potato Res. 78: 403- 412.

Hijmans, R.J. (2003) The effect of climate change on global potato production. Am. J. Potato Res. 80: 271-290.

Huang, G.T., S.L. Ma, L.P. Bai, L. Zhang, H. Ma, P. Jia, J. Liu, M. Zhong and Z.F. Guo (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol. Biol. Rep. 39: 969-987.

Hussain, S.S., M.A. Kayani and M. Amjad (2011) Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotechnol. Prog. 27: 297- 306.

Huynh, H.D. (2013) Assessment on drought tolerance in transgenic potato lines under confined conditions (Doctoral Dissertation). Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.

Huynh, H.D., T. Shimazaki, M. Kasuga, K. Yamaguchi-Shinozaki, A. Kikuchi and K.N. Watanabe (2014) In vitro evaluation of dehydration tolerance in AtDREB1A transgenic potatoes. Plant Biotechnol. 31: 77-81.

IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.), Geneva, Switzerland.

Iwama, K. (2008) Physiology of the potato: New insights into root system and repercussions for crop management. Potato Res. 51: 333-353.

Jackson, S.A. and R.E. Hanneman (1999) Crossability between cultivated and wild tuber- and non-tuber-bearing Solanums. Euphytica 109: 51-67.

Jansky, S. (2006) Overcoming hybridization barriers in potato. Plant Breed. 125: 1-12.

Jansky, S. and A. Hamernik (2009) The introgression of 2× 1EBN Solanum species into the cultivated potato using Solanum verrucosum as a bridge. Genet. Resour. Crop Evol. 56: 1107-1115.

Jansky, S.H., H. Dempewolf, E.L. Camadro, R. Simon, E. Zimnoch-Guzowska, D.A. Bisognin and M. Bonierbale (2013) A case for crop wild relative preservation and use in potato. Crop Sci. 53: 746-754.

Jensen, C.R. (1981) Influence of soil water stress on wilting and water relations of differently osmotically adjusted wheat plants. New Phytol. 89: 15-24.

Johnston, S.A. and R.E. Hanneman (1982) Manipulations of endosperm balance number overcome crossing barriers between diploid Solanum species. Science 217: 446- 448.

Khan, M.A., D.C. Gemenet and A. Villordon (2016) Root system architecture and abiotic stress tolerance: Current knowledge in root and tuber crops. Front. Plant Sci. 7: 1584.

Kim, T.-H., M. Böhmer, H. Hu, N. Nishimura and J.I. Schroeder (2010) Guard cell signal transduction network: Advances in understanding abscisic acid, CO2, and Ca2+ Signaling. Annu. Rev. Plant Biol. 61: 561–591.

Koevoets, I.T., J.H. Venema, J.T.M. Elzenga and C. Testerink (2016) Roots withstanding their environment: Exploiting root system architecture responses to abiotic stress to improve crop tolerance. Front. Plant Sci. 7: 1335.

Lafta, A.M. and J.H. Lorenzen (1995) Effect of high temperature on plant growth and carbohydrate metabolism in potato. Plant Physiol. 109: 637-643.

Lahlou, O., S. Ouattar and J.-F. Ledent (2003) The effect of drought and cultivar on growth parameters, yield and yield components of potato. Agronomie 23: 257-268.

Lahlou, O. and J.-F. Ledent (2005) Root mass and depth, stolons and roots formed on stolons in four cultivars of potato under water stress. Eur. J. Agron. 22: 159-173.

Lamaoui, M., M. Jemo, R. Datla and F. Bekkaoui (2018) Heat and drought stresses in crops and approaches for their mitigation. Front. Chem. 6: 26.

Lata, C. and M. Prasad (2011) Role of DREBs in regulation of abiotic stress responses in plants. J. Exp. Bot. 62: 4731-4748.

Levy, D., W.K. Coleman and R.E. Veilleux (2013) Adaptation of potato to water shortage: Irrigation management and enhancement of tolerance to drought and salinity. Am.J. Potato Res. 90: 186-206.

Li, Y., H. Li, Y. Li and S. Zhang (2017) Improving water-use efficiency by decreasing stomatal conductance and transpiration rate to maintain higher ear photosynthetic rate in drought-resistant wheat. Crop J. 5: 231-239.

Luthra, S.K., K. Malik, V.K. Gupta and B.P. Singh (2013) Evaluation of potato genotypes under high temperature stress conditions. Crop Improv. 40: 74-80.

Mahrookashani, A., S. Siebert, H. Hüging and F. Ewert (2017) Independent and combined effects of high temperature and drought stress around anthesis on wheat. J. Agron. Crop Sci. 203: 453-463.

Mannocchi, F., F. Todisco and L. Vergni (2004) Agricultural drought: Indices, definition and analysis. In: UNESCO/IAHS/IWHA Symposium: The Basis of Civilization – Water Science? IAHS Publ., Rome.

Mathur, S., D. Agrawal and A. Jajoo (2014) Photosynthesis: Response to high temperature stress. J. Photochem. Photobiol. B: Biol. 137: 116-126.

Maxwell, K. and G.N. Johnson (2000) Chlorophyll fluorescence – A practical guide. J. Exp. Bot. 51: 659-668.

Mendiburu, F. (2019) Agricolae: Statistical procedures for agriculture research. At:https://cran.r-project.org/package:agricolae.

Michel, B.E. (1983) Evaluation of the water potentials of solutions of polyethylene glycol 8000 both in the absence and presence of other solutes. Plant Physiol. 72: 66-70.

Midmore, D.J. and R.K. Prange (1991) Sources of heat tolerance amongst potato cultivars, breeding lines, and Solanum species. Euphytica 55: 235-245.

Mitsuda, N. and M. Ohme-Takagi (2009) Functional analysis of transcription factors in Arabidopsis. Plant Cell Physiol. 50: 1232-1248.

Mittler, R. (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11: 15-19.

Mittler, R., and E. Blumwald (2015) The roles of ROS and ABA in systemic acquired acclimation. Plant Cell 27: 64–70.

Monneveux, P., D.A. Ramírez, M.A. Khan, R.M. Raymundo, H. Loayza and R. Quiroz (2014) Drought and heat tolerance evaluation in potato (Solanum tuberosum L.). Potato Res. 57: 225-247.

Moon, S.J., S.Y. Han, D.Y. Kim, I.S. Yoon, D. Shin, M.O. Byun, H.B. Kwon and B.G. Kim (2015) Ectopic expression of a hot pepper bZIP-like transcription factor in potato enhances drought tolerance without decreasing tuber yield. Plant Mol. Biol. 89: 421-431.

Munoz-Mayor, A., B. Pineda, J.O. Garcia-Abellán, T. Antón, B. Garcia-Sogo, P. Sanchez- Bel, F.B. Flores, A. Atarés, T. Angosto, J.A. Pintor-Toro, et al. (2012) Overexpression of dehydrin tas14 gene improves the osmotic stress imposed by drought and salinity in tomato. J. Plant Physiol. 169: 459-468.

Nakashima, K., Y. Ito and K. Yamaguchi-Shinozaki (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol. 149: 88-95.

NASA (2018) Graphic: Global warming from 1880 to 2017. At:https://climate.nasa.gov/climate_resources/139/.

Nicot, N., J.F. Hausman, L. Hoffmann and D. Evers (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J. Exp. Bot. 56: 2907-2914.

Novy, R.G. and R.E. Hanneman (1991) Hybridization between GP. Tuberosum haploids and 1EBN wild potato species. Am. Potato J. 68: 151-169.

Obidiegwu, J.E., G.J. Bryan, H.G. Jones and A. Prashar (2015) Coping with drought: stress and adaptive responses in potato and perspectives for improvement. Front. Plant Sci. 6: 542.

Oosumi, T., D.R. Rockhold, M.M. Maccree, K.L. Deahl, K.F. McCue and W.R. Belknap (2009) Gene Rpi-bt1 from Solanum bulbocastanum confers resistance to late blight in transgenic potatoes. Am. J. Potato Res. 86: 456-465.

Ortiz, R., J. Franco and M. Iwanaga (1997) Transfer of resistance to potato cyst nematode (Globodera pallida) into cultivated potato Solanum tuberosum through first division restitution 2n pollen. Euphytica 96: 339-344.

Pandey, P., V. Ramegowda and M. Senthil-Kumar (2015) Shared and unique responses of plants to multiple individual stresses and stress combinations: Physiological and molecular mechanisms. Front. Plant Sci. 6: 723.

Penuelas, J. and I. Filella (1998) Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends Plant Sci. 3: 151-155.

Prohens, J., P. Gramazio, M. Plazas, H. Dempewolf, B. Kilian, M.J. Díez, A. Fita, F.J. Herraiz, A. Rodríguez-Burruezo, S. Soler, et al. (2017) Introgressiomics: A new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica 213.

Pungulani, L.L.M., J.P. Millner, W.M. Williams and M. Banda (2013) Improvement of leaf wilting scoring system in cowpea (Vigna unguiculata (L) Walp.): From qualitative scale to quantitative index. Aus. J. Crop Sci. 7: 1262-1269.

Ramírez, D.A., W. Yactayo, R. Gutiérrez, V. Mares and F. De Mendiburu (2014) Chlorophyll concentration in leaves is an indicator of potato tuber yield in water- shortage conditions. Sci. Hortic. 168: 202-209.

Ramírez, D.A., J. Kreuze, W. Amoros, J.E. Valdivia-Silva, J. Ranck, S. Garcia, E. Salas and W. Yactayo (2019) Extreme salinity as a challenge to grow potatoes under Mars-like soil conditions: Targeting promising genotypes. Int. J. Astrobiology 18: 18-24.

Reynolds, M.P. and E.E. Ewing (1989a) Effects of high air and soil temperature stress on growth and tuberization in Solanum tuberosum. Ann. Bot. 64: 241-247.

Reynolds, M.P. and E.E. Ewing (1989b) Heat tolerance in tuber bearing Solanum species a protocol for screening. Am. Potato J. 66: 63-74.

Reynolds, M.P., E.E. Ewing and T.G. Owens (1990) Photosynthesis at high temperature in tuber-bearing Solanum Species – A comparison between accessions of contrasting heat tolerance. Plant Physiol. 93: 791-797.

Riechmann, J.L. and E.M. Meyerowitz (1998) The AP2/REBP family of plant transcription factors. Biol. Chem. 379: 633-646.

Rizhsky, L., H. Liang and R. Mittler (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol. 130: 1143-1151.

Rizhsky, L., H. Liang, J. Shuman, V. Shulaev, S. Davletova and R. Mittler (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol. 134: 1683-1696.

Rolando, J.L., D.A. Ramírez, W. Yactayo, P. Monneveux and R. Quiroz (2015) Leaf greenness as a drought tolerance related trait in potato (Solanum tuberosum L.). Environ. Exp. Bot. 110: 27-35.

Romero, A.P., A. Alarcon, R.I. Valbuena and C.H. Galeano (2017) Physiological assessment of water stress in potato using spectral information. Front. Plant Sci. 8: 1608.

Roychoudhury, A., S. Paul, and S. Basu (2013) Cross-talk between abscisic acid- dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep. 32: 985-1006.

Rudack, K., S. Seddig, H. Sprenger, K. Köhl, R. Uptmoor and F. Ordon (2017) Drought stress-induced changes in starch yield and physiological traits in potato. J. Agron. Crop Sci. 203: 494-505.

Rykaczewska, K. (2015) The effect of high temperature occurring in subsequent stages of plant development on potato yield and tuber physiological defects. Am. J. Potato Res. 92: 339-349.

Rykaczewska, K. (2017) Impact of heat and drought stresses on size and quality of the potato yield. Plant Soil Environ. 63: 40-46.

Rymaszewski, W., D. Vile, A. Bediee, M. Dauzat, N. Luchaire, D. Kamrowska, C. Granier and J. Hennig (2017) Stress-related gene expression reflects morphophysiological responses to water deficit. Plant Physiol. 174: 1913-1930.

Schafleitner, R., R. Gutierrez, R. Espino, A. Gaudin, J. Pérez, M. Martínez, A. Domínguez, L. Tincopa, C. Alvarado, G. Numberto, et al. (2007a) Field screening for variation of drought tolerance in Solanum tuberosum L. by agronomical, physiological and genetic analysis. Potato Res. 50: 71-85.

Schafleitner, R., R.O. G. Rosales, A. Gaudin, C.A. A. Aliaga, G.N. Martinez, L.R. T. Marca, L.A. Bolivar, F.M. Delgado, R. Simon and M. Bonierbale (2007b) Capturing candidate drought tolerance traits in two native Andean potato clones by transcription profiling of field grown plants under water stress. Plant Physiol.Biochem. 45: 673-690.

Schapendonk, A.H.C., C.J. Spitters and P. Groot (1989) Effects of water stress on photosynthesis and chlorophyll fluorescence of five potato cultivars. Potato Res. 32: 17-32.

Schmittgen, T.D. and K.J. Livak (2008) Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3: 1101-1108.

Sehgal, A., K. Sita, K.H.M. Siddique, R. Kumar, S. Bhogireddy, R.K. Varshney, B. HanumanthaRao, R.M. Nair, P.V.V. Prasad and H. Nayyar (2018) Drought or/and heat-stress effects on seed filling in food crops: Impacts on functional biochemistry, seed yelds, and nutritional quality. Front. Plant Sci. 9: 1705.

Shaar-Moshe, L., E. Blumwald and Z. Peleg (2017) Unique physiological and transcriptional shifts under combinations of salinity, drought, and heat. Plant Physiol. 174: 421-434.

Shavrukov, Y., A. Kurishbayev, S. Jatayev, V. Shvidchenko, L. Zotova, F. Koekemoer,

S. de Groot, K. Soole and P. Langridge (2017) Early flowering as a drought escape mechanism in plants: How can it aid wheat production? Front. Plant Sci. 8: 1950.

Shimazaki, T., T. Endo, M. Kasuga, K. Yamaguchi-Shinozaki, K.N. Watanabe and A. Kikuchi (2016) Evaluation of the yield of abiotic-stress-tolerant AtDREB1A transgenic potato under saline conditions in advance of field trials. Breed. Sci. 66: 703-710.

Shinozaki, K. and K. Yamaguchi-Shinozaki (1997) Gene expression and signal transduction in water-stress response. Plant Physiol. 115: 327-334.

Shinozaki, K. and K. Yamaguchi-Shinozaki (2007) Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58: 221-227.

Singh, A., S. Siddappa, V. Bhardwaj, B. Singh, D. Kumar and B.P. Singh (2015) Expression profiling of potato cultivars with contrasting tuberization at elevated temperature using microarray analysis. Plant Physiol. Biochem. 97: 108-116.

Song, J., J.M. Bradeen, S.K. Naess, J.A. Raasch, S.M. Wielgus, G.T. Haberlach, J. Liu, H. Kuang, S. Austin-Phillips, C.R. Buell, et al. (2003) Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. PNAS 100: 9128-9133.

Soltys-Kalina, D., J. Plich, D. Strzelczyk-Zyta, J. Sliwka and W. Marczewski (2016) The effect of drought stress on the leaf relative water content and tuber yield of a half- sib family of 'Katahdin'-derived potato cultivars. Breed. Sci. 66: 328-331.

Symda, P., H. Jakuczun, K. Debski, J. Sliwka, R. Thieme, M. Nachtigall, I. Wasilewicz- Flis and E. Zimnoch-Guzowska (2013) Development of somatic hybrids Solanum x michoacanum Bitter. (Rydb.) (+) S. tuberosum L. and autofused 4x S. x michoacanum plants as potential sources of late blight resistance for potato breeding. Plant Cell Rep. 32: 1231-1241.

Tang, R., W. Zhu, X. Song, X. Lin, J. Cai, M. Wang and Q. Yang (2016) Genome-wide identification and function analyses of heat shock transcription factors in potato. Front. Plant Sci. 7: 490.

Tani, E., E. Chronopoulou, N. Labrou, E. Sarri, Μ. Goufa, X. Vaharidi, A. Tornesaki, M. Psychogiou, P. Bebeli and Ε. Abraham (2019) Growth, physiological, biochemical,and transcriptional responses todrought stress in seedlings of Medicago sativa L.,Medicago arborea L. and their hybrid (Alborea). Agronomy 9: 38.

Tardieu, F., B. Parent, C.F. Caldeira and C. Welcker (2014) Genetic and physiological controls of growth under water deficit. Plant Physiol. 164: 1628-1635.

Timlin, D.J., S.M.L. Rahman, J. Baker, V.R. Reddy, D. Fleisher and B. Quebedeaux (2006) Whole plant photosynthesis, development, and carbon partitioning in potato as a function of temperature. Agron. J. 98.

Trenberth, K.E. (2005) The impact of climate change and variability on heavy precipitation, floods, and droughts. In: Anderson, M.G. (ed.) Encyclopedia of Hydrological Sciences, John Wiley & Son.

Trewavas, A.J. and R. Malho (1997) Signal perception and transduction: The origin of the phenotype. Plant Cell 9: 1181-1195.

Usman, M.G., M.Y. Rafii, M.R. Ismail, M.A. Malek and M. Abdul Latif (2014) Heritability and genetic advance among chili pepper genotypes for heat tolerance and morphophysiological characteristics. Sci. World J. 2014: 308042.

Vacher, J.J. (1998) Responses of two main Andean crops, quinoa (Chenopodium quinoa Willd) and papa amarga (Solanum juzepczukii Buk.) to drought on the Bolivia Altiplano: Significance of local adaptation. Agric. Ecosyst. Environ. 68: 99-108.

van Muijen, D., A.M. Anithakumari, C. Maliepaard, R.G. Visser and C.G. van der Linden (2016) Systems genetics reveals key genetic elements of drought induced gene regulation in diploid potato. Plant Cell Environ. 39: 1895-1908.

Vasquez-Robinet, C., S.P. Mane, A.V. Ulanov, J.I. Watkinson, V.K. Stromberg, D. De Koeyer, R. Schafleitner, D.B. Willmot, M. Bonierbale, H.J. Bohnert, et al. (2008) Physiological and molecular adaptations to drought in Andean potato genotypes. J. Exp. Bot. 59: 2109-2123.

Vayda, M.E. (1993) Environmental stress and its impact on potato yield. In: Bradshaw,J.E. and G.R. Mackay (eds.) Potato Genetics, CAB International, Wallingford, UK.

Vickers, C.E., J. Gershenzon, M.T. Lerdau and F. Loreto (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat. Chem. Biol. 5: 283-291.

Vos, J. and A.J. Haverkort (2007) Water availability and potato crop performance. In: Vreugdenhil, D. (ed.) Potato Biology and Biotechnology: Advance and Perspective, Elsevier, Amsterdam, The Netherland, pp. 333-351.

Watanabe, J.A., M. Orrillo and K.N. Watanabe (1999) Frequency of potato genotypes with multiple quantitative pest resistance traits in 4x × 2x crosses. Breed. Sci. 49: 53-61.

Watanabe, K., H.M. El-Nashaar and M. Iwanaga (1992) Transmission of bacterial wilt resistance by first division restitution (FDR) 2n pollen via 4x × 2x crosses in potatoes. Euphytica 60: 21-26.

Watanabe, K., M. Orrillo, M. Iwanaga, R. Ortiz, R. Freyre and S. Perez (1994) Diploid potato germplasm derived from wild and land race genetic resources. Am. Potato J. 71: 599-604.

Watanabe, K. (2015) Potato genetics, genomics, and applications. Breed. Sci. 65: 53-68.

Watanabe, K.N., M. Orrillo, S. Vega, A.M. Golmirzaie, S. Perez, J. Crusado and J.A. Watanabe (1996) Generation of pest resistant, diploid germplasm with short-day adaptation from diverse genetic stock. Breed. Sci. 46: 329-336.

Watanabe, K.N., A. Kikuchi, T. Shimazaki and M. Asahina (2011) Salt and drought stress tolerances in transgenic potatoes and wild species. Potato Res. 54: 319-324.

White, P.J., J.E. Bradshaw, M.F.B. Dale, G. Ramsay, J.P. Hammond and M.R. Broadley (2009) Relationships between yield and mineral concentrations in potato tubers. Hort. Sci. 44: 6-11.

Wilhite, D.A. and M.H. Glantz (1985) Understanding the drought phenomenon: The role of definitions. Water Int. 10: 111-120.

Wishart, J., T.S. George, L.K. Brown, P.J. White, G. Ramsay, H. Jones and P.J. Gregory (2014) Field phenotyping of potato to assess root and shoot characteristics associated with drought tolerance. Plant Soil 378: 351-363.

Wolf, S., A.A. Olesinski, J. Rudich and A. Marani (1990) Effect of high temperature on photosynthesis in potatoes. Ann. Bot. 65: 179-185.

Yamaguchi, J. and A. Tanaka (1990) Quantitative observation on the root system of various crops growing in the field. Soil Sci. Plant Nutr. 36: 483-493.

Yang, X., J. Liu, J. Xu, S. Duan, Q. Wang, G. Li and L. Jin (2019) Transcriptome profiling reveals effects of drought stress on gene expression in diploid potato genotype P3-198. Int. J. Mol. Sci. 20: 852.

Yermishin, A.P., Y.V. Polyukhovich, E.V. Voronkova and A.V. Savchuk (2014) Production of hybrids between the 2EBN bridge species Solanum verrucosum and 1EBN diploid potato species. Am. J. Potato Res. 91: 610-617.

Yermishin, A.P., A.V. Levy, E.V. Voronkova, Y.V. Polyukhovich and A.S. Ageeva (2017) Overcoming unilateral incompatibility in crosses with wild allotetraploid potato species Solanum stoloniferum Schldtl. & Bouchet. Euphytica 213: 13.

Zandalinas, S.I., R. Mittler, D. Balfagon, V. Arbona and A. Gomez-Cadenas (2018) Plant adaptations to the combination of drought and high temperatures. Physiol. Plant 162: 2-12.

Zarzyńska, K., D. Boguszewska-Mańkowska and A. Nosalewicz (2017) Differences in size and architecture of the potato cultivars root system and their tolerance to drought stress. Plant Soil Environ. 63: 159-164.

Zhang, Q. (2007) Strategies for developing Green Super Rice. PNAS 104: 16402. Zhang, Y., S.D. Chou, A. Murshid, T.L. Prince, S. Schreiner, M.A. Stevenson and S.K.Calderwood (2011) The role of heat shock factors in stress-induced transcription. Methods Mol. Biol. 787: 21-32.

Zhou, R., X. Yu, C.O. Ottosen, E. Rosenqvist, L. Zhao, Y. Wang, W. Yu, T. Zhao and Z. Wu (2017) Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biol. 17: 24.

Zhu, J.K. (2016) Abiotic stress signaling and responses in plants. Cell 167: 313-324.

Zinn, K.E., M. Tunc-Ozdemir and J.F. Harper (2010) Temperature stress and plant sexual reproduction: Uncovering the weakest links. J. Exp. Bot. 61: 1959-1968.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る