リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The Escherichia coli S2P intramembrane protease RseP regulates ferric citrate uptake by cleaving the sigma factor regulator FecR」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The Escherichia coli S2P intramembrane protease RseP regulates ferric citrate uptake by cleaving the sigma factor regulator FecR

Yokoyama, Tatsuhiko Niinae, Tomoya Tsumagari, Kazuya Imami, Koshi Ishihama, Yasushi Hizukuri, Yohei Akiyama, Yoshinori 京都大学 DOI:10.1016/j.jbc.2021.100673

2021.01

概要

Escherichia coli RseP, a member of the S2P family of intramembrane proteases, is involved in the activation of the σE extracytoplasmic stress response and elimination of signal peptides from the cytoplasmic membrane. However, whether RseP has additional cellular functions is unclear. In this study, we used mass spectrometry-based quantitative proteomic analysis to search for new substrates that might reveal unknown physiological roles for RseP. Our data showed that the levels of several Fec system proteins encoded by the fecABCDE operon (fec operon) were significantly decreased in an RseP-deficient strain. The Fec system is responsible for the uptake of ferric citrate, and the transcription of the fec operon is controlled by FecI, an alternative sigma factor, and its regulator FecR, a single-pass transmembrane protein. Assays with a fec operon expression reporter demonstrated that the proteolytic activity of RseP is essential for the ferric citrate-dependent upregulation of the fec operon. Analysis using the FecR protein and FecR-derived model proteins showed that FecR undergoes sequential processing at the membrane and that RseP participates in the last step of this sequential processing to generate the N-terminal cytoplasmic fragment of FecR that participates in the transcription of the fec operon with FecI. A shortened FecR construct was not dependent on RseP for activation, confirming this cleavage step is the essential and sufficient role of RseP. Our study unveiled that E. coli RseP performs the intramembrane proteolysis of FecR, a novel physiological role that is essential for regulating iron uptake by the ferric citrate transport system.

この論文で使われている画像

関連論文

参考文献

1. Brown, M. S., Ye, J., Rawson, R. B., and Goldstein, J. L. (2000) Regulated

intramembrane proteolysis: A control mechanism conserved from bacteria to humans. Cell 100, 391–398

2. Wolfe, M. S. (2009) Intramembrane proteolysis. Chem. Rev. 109, 1599–

1612

3. Sun, L., Li, X., and Shi, Y. (2016) Structural biology of intramembrane

proteases: Mechanistic insights from rhomboid and S2P to γ-secretase.

Curr. Opin. Struct. Biol. 37, 97–107

4. Beard, H. A., Barniol-Xicota, M., Yang, J., and Verhelst, S. H. L. (2019)

Discovery of cellular roles of intramembrane proteases. ACS Chem. Biol.

14, 2372–2388

5. Deu, E. (2017) Proteases as antimalarial targets: Strategies for genetic,

chemical, and therapeutic validation. FEBS J. 284, 2604–2628

6. Kühnle, N., Dederer, V., and Lemberg, M. K. (2019) Intramembrane

proteolysis at a glance: From signalling to protein degradation. J. Cell Sci.

132, jcs217745

7. Schneider, J. S., and Glickman, M. S. (2013) Function of site-2 proteases

in bacteria and bacterial pathogens. Biochim. Biophys. Acta 1828, 2808–

2814

8. Konovalova, A., Søgaard-Andersen, L., and Kroos, L. (2014) Regulated

proteolysis in bacterial development. FEMS Microbiol. Rev. 38, 493–522

9. Kanehara, K., Ito, K., and Akiyama, Y. (2002) YaeL (EcfE) activates the σE

pathway of stress response through a site-2 cleavage of anti-σE, RseA.

Genes Dev. 16, 2147–2155

10. Kanehara, K., Akiyama, Y., and Ito, K. (2001) Characterization of the

yaeL gene product and its S2P-protease motifs in Escherichia coli. Gene

281, 71–79

11. Alba, B. M., Leeds, J. A., Onufryk, C., Lu, C. Z., and Gross, C. A. (2002)

DegS and YaeL participate sequentially in the cleavage of RseA to

activate the σE-dependent extracytoplasmic stress response. Genes Dev.

16, 2156–2168

12. Kroos, L., and Akiyama, Y. (2013) Biochemical and structural insights

into intramembrane metalloprotease mechanisms. Biochim. Biophys.

Acta 1828, 2873–2885

13. Ades, S. E. (2008) Regulation by destruction: Design of the σE envelope

stress response. Curr. Opin. Microbiol. 11, 535–540

14. Saito, A., Hizukuri, Y., Matsuo, E. I., Chiba, S., Mori, H., Nishimura, O.,

Ito, K., and Akiyama, Y. (2011) Post-liberation cleavage of signal peptides

is catalyzed by the site-2 protease (S2P) in bacteria. Proc. Natl. Acad. Sci.

U. S. A. 108, 13740–13745

15. Dunny, G. M. (2013) Enterococcal sex pheromones: Signaling, social

behavior, and evolution. Annu. Rev. Genet. 47, 457–482

16. Yu, Y. T. N., and Kroos, L. (2000) Evidence that SpoIVFB is a novel type

of membrane metalloprotease governing intercompartmental communication during Bacillus subtilis sporulation. J. Bacteriol. 182, 3305–3309

17. Muller, C., Bang, I. S., Velayudhan, J., Karlinsey, J., Papenfort, K., Vogel,

J., and Fang, F. C. (2009) Acid stress activation of the σE stress response

in Salmonella enterica serovar Typhimurium. Mol. Microbiol. 71, 1228–

1238

18. Delgado, C., Florez, L., Lollett, I., Lopez, C., Kangeyan, S., Kumari, H.,

Stylianou, M., Smiddy, R. J., Schneper, L., Sautter, R. T., Smith, D.,

Szatmari, G., and Mathee, K. (2018) Pseudomonas aeruginosa regulated

intramembrane proteolysis: Protease MucP can overcome mutations in

J. Biol. Chem. (2021) 296 100673

15

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

E. coli RseP-catalyzed intramembrane proteolysis of FecR

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

the AlgO periplasmic protease to restore alginate production in nonmucoid revertants. J. Bacteriol. 200, e00215–e00218

Pennetzdorfer, N., Lembke, M., Pressler, K., Matson, J. S., Reidl, J., and

Schild, S. (2019) Regulated proteolysis in Vibrio cholerae allowing rapid

adaptation to stress conditions. Front. Cell. Infect. Microbiol. 9, 214

Draper, R. C., Martin, L. W., Beare, P. A., and Lamont, I. L. (2011)

Differential proteolysis of sigma regulators controls cell-surface signalling in Pseudomonas aeruginosa. Mol. Microbiol. 82, 1444–1453

King-Lyons, N. D., Smith, K. F., and Connell, T. D. (2007) Expression of

hurP, a gene encoding a prospective site 2 protease, is essential for

heme-dependent induction of bhuR in Bordetella bronchiseptica. J.

Bacteriol. 189, 6266–6275

Feng, L., Yan, H., Wu, Z., Yan, N., Wang, Z., Jeffrey, P. D., and Shi, Y.

(2007) Structure of a site-2 protease family intramembrane metalloprotease. Science 318, 1608–1612

Koide, K., Maegawa, S., Ito, K., and Akiyama, Y. (2007) Environment of

the active site region of RseP, an Escherichia coli regulated intramembrane proteolysis protease, assessed by site-directed cysteine

alkylation. J. Biol. Chem. 282, 4553–4560

Li, X., Wang, B., Feng, L., Kang, H., Qi, Y., Wang, J., and Shi, Y. (2009)

Cleavage of RseA by RseP requires a carboxyl-terminal hydrophobic

amino acid following DegS cleavage. Proc. Natl. Acad. Sci. U. S. A. 106,

14837–14842

Inaba, K., Suzuki, M., Maegawa, K. I., Akiyama, S., Ito, K., and Akiyama,

Y. (2008) A pair of circularly permutated PDZ domains control RseP, the

S2P family intramembrane protease of Escherichia coli. J. Biol. Chem.

283, 35042–35052

Miyake, T., Hizukuri, Y., and Akiyama, Y. (2020) Involvement of a

membrane-bound amphiphilic helix in substrate discrimination and

binding by an Escherichia coli S2P peptidase RseP. Front. Microbiol. 11,

607381

Hizukuri, Y., Oda, T., Tabata, S., Tamura-Kawakami, K., Oi, R., Sato, M.,

Takagi, J., Akiyama, Y., and Nogi, T. (2014) A structure-based model of

substrate discrimination by a noncanonical PDZ tandem in the

intramembrane-cleaving protease RseP. Structure 22, 326–336

Akiyama, K., Mizuno, S., Hizukuri, Y., Mori, H., Nogi, T., and Akiyama,

Y. (2015) Roles of the membrane-reentrant β-hairpin-like loop of RseP

protease in selective substrate cleavage. eLife 4, e08928

Akiyama, Y., Kanehara, K., and Ito, K. (2004) RseP (YaeL), an Escherichia

coli RIP protease, cleaves transmembrane sequences. EMBO J. 23, 4434–

4442

Began, J., Cordier, B., Brezinová, J., Delisle, J., Hexnerová, R., Srb, P.,

Rampírová, P., Kozísek, M., Baudet, M., Couté, Y., Galinier, A., Veverka,

V., Doan, T., and Strisovsky, K. (2020) Rhomboid intramembrane protease YqgP licenses bacterial membrane protein quality control as

adaptor of FtsH AAA protease. EMBO J. 39, e102935

Tsumagari, K., Shirakabe, K., Ogura, M., Sato, F., Ishihama, Y., and

Sehara-Fujisawa, A. (2017) Secretome analysis to elucidate

metalloprotease-dependent ectodomain shedding of glycoproteins during neuronal differentiation. Genes Cells 22, 237–244

Arends, J., Thomanek, N., Kuhlmann, K., Marcus, K., and Narberhaus, F.

(2016) In vivo trapping of FtsH substrates by label-free quantitative

proteomics. Proteomics 16, 3161–3172

Saita, S., Nolte, H., Fiedler, K. U., Kashkar, H., Saskia, A. V., Zahedi, R. P.,

Krüger, M., and Langer, T. (2017) PARL mediates Smac proteolytic

maturation in mitochondria to promote apoptosis. Nat. Cell Biol. 19,

318–328

Braun, V., Mahren, S., and Ogierman, M. (2003) Regulation of the Fecltype ECF sigma factor by transmembrane signalling. Curr. Opin.

Microbiol. 6, 173–180

Braun, V., and Mahren, S. (2005) Transmembrane transcriptional control (surface signalling) of the Escherichia coli Fec type. FEMS Microbiol.

Rev. 29, 673–684

Härle, C., Kim, I., Angerer, A., and Braun, V. (1995) Signal transfer

through three compartments: Transcription initiation of the Escherichia

coli ferric citrate transport system from the cell surface. EMBO J. 14,

1430–1438

16 J. Biol. Chem. (2021) 296 100673

37. Angerer, A., Enz, S., Ochs, M., and Braun, V. (1995) Transcriptional

regulation of ferric citrate transport in Escherichia coli K-12. Fecl belongs to a new subfamily of σ70-type factors that respond to extracytoplasmic stimuli. Mol. Microbiol. 18, 163–174

38. Enz, S., Braun, V., and Crosa, J. H. (1995) Transcription of the region

encoding the ferric dicitrate-transport system in Escherichia coli: Similarity between promoters for fecA and for extracytoplasmic function

sigma factors. Gene 163, 13–18

39. Ochs, M., Angerer, A., Enz, S., and Braun, V. (1996) Surface signaling in

transcriptional regulation of the ferric citrate transport system of

Escherichia coli: Mutational analysis of the alternative sigma factor FecI

supports its essential role in fec transport gene transcription. Mol. Gen.

Genet. 250, 455–465

40. Ochs, M., Veitinger, S., Kim, I., Weiz, D., Angerer, A., and Braun, V.

(1995) Regulation of citrate-dependent iron transport of Escherichia coli:

FecR is required for transcription activation by Fecl. Mol. Microbiol. 15,

119–132

41. Van Hove, B., Staudenmaier, H., and Braun, V. (1990) Novel twocomponent transmembrane transcription control: Regulation of iron

dicitrate transport in Escherichia coli K-12. J. Bacteriol. 172, 6749–

6758

42. Welz, D., and Braun, V. (1998) Ferric citrate transport of Escherichia

coli: Functional regions of the FecR transmembrane regulatory protein.

J. Bacteriol. 180, 2387–2394

43. Braun, V., and Hantke, K. (2020) Novel Tat-dependent protein secretion. J. Bacteriol. 202, e00058-20

44. Huang, D. W., Sherman, B. T., and Lempicki, R. A. (2009) Bioinformatics enrichment tools: Paths toward the comprehensive functional

analysis of large gene lists. Nucleic Acids Res. 37, 1–13

45. Huang, D. W., Sherman, B. T., and Lempicki, R. A. (2009) Systematic

and integrative analysis of large gene lists using DAVID bioinformatics

resources. Nat. Protoc. 4, 44–57

46. Saiki, K., Mogi, T., and Anraku, Y. (1992) Heme O biosynthesis in

Escherichia coli: The cyoE gene in the cytochrome BO operon encodes a

protoheme IX farnesyltransferase. Biochem. Biophys. Res. Commun. 189,

1491–1497

47. Saiki, K., Mogi, T., Ogura, K., and Anraku, Y. (1993) In vitro heme O

synthesis by the cyoE gene product from Escherichia coli. J. Biol. Chem.

268, 26041–26044

48. Soupene, E., He, L., Yan, D., and Kustu, S. (1998) Ammonia acquisition

in enteric bacteria: Physiological role of the ammonium/methylammonium transport B (AmtB) protein. Proc. Natl. Acad. Sci. U. S. A.

95, 7030–7034

49. Grass, G., Wong, M. D., Rosen, B. P., Smith, R. L., and Rensing, C. (2002)

ZupT is a Zn(II) uptake system in Escherichia coli. J. Bacteriol. 184, 864–

866

50. Grass, G., Franke, S., Taudte, N., Nies, D. H., Kucharski, L. M., Maguire,

M. E., and Rensing, C. (2005) The metal permease ZupT from Escherichia coli is a transporter with a broad substrate spectrum. J. Bacteriol.

187, 1604–1611

51. Bastiaansen, K. C., Otero-Asman, J. R., Luirink, J., Bitter, W., and

Llamas, M. A. (2015) Processing of cell-surface signalling anti-sigma

factors prior to signal recognition is a conserved autoproteolytic

mechanism that produces two functional domains. Environ. Microbiol.

17, 3263–3277

52. Otero-Asman, J. R., García-García, A. I., Civantos, C., Quesada, J. M.,

and Llamas, M. A. (2019) Pseudomonas aeruginosa possesses three

distinct systems for sensing and using the host molecule haem. Environ.

Microbiol. 21, 4629–4647

53. Bastiaansen, K. C., Ibañez, A., Ramos, J. L., Bitter, W., and Llamas, M. A.

(2014) The Prc and RseP proteases control bacterial cell-surface signalling activity. Environ. Microbiol. 16, 2433–2443

54. Saha, R., Saha, N., Donofrio, R. S., and Bestervelt, L. L. (2013) Microbial

siderophores: A mini review. J. Basic Microbiol. 53, 303–317

55. Wagegg, W., and Braun, V. (1981) Ferric citrate transport in Escherichia

coli requires outer membrane receptor protein FecA. J. Bacteriol. 145,

156–163

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

E. coli RseP-catalyzed intramembrane proteolysis of FecR

56. Pressler, U., Staudenmaier, H., Zimmermann, L., and Braun, V. (1988)

Genetics of the iron dicitrate transport system of Escherichia coli. J.

Bacteriol. 170, 2716–2724

57. Ferguson, A. D., Chakraborty, R., Smith, B. S., Esser, L., Van Der Helm,

D., and Deisenhofer, J. (2002) Structural basis of gating by the outer

membrane transporter FecA. Science 295, 1715–1719

58. Staudenmaier, H., Van Hove, B., Yaraghi, Z., and Braun, V. (1989)

Nucleotide sequences of the fecBCDE genes and locations of the

proteins suggest a periplasmic-binding-protein-dependent transport

mechanism for iron(III) dicitrate in Escherichia coli. J. Bacteriol. 171,

2626–2633

59. Masuda, T., Saito, N., Tomita, M., and Ishihama, Y. (2009) Unbiased

quantitation of Escherichia coli membrane proteome using phase

transfer surfactants. Mol. Cell. Proteomics 8, 2770–2777

60. Angerer, A., and Braun, V. (1998) Iron regulates transcription of the

Escherichia coli ferric citrate transport genes directly and through the

transcription initiation proteins. Arch. Microbiol. 169, 483–490

61. Douchin, V., Bohn, C., and Bouloc, P. (2006) Down-regulation of porins

by a small RNA bypasses the essentiality of the regulated intramembrane

proteolysis protease RseP in Escherichia coli. J. Biol. Chem. 281, 12253–

12259

62. Wriedt, K., Angerer, A., and Braun, V. (1995) Transcriptional regulation

from the cell surface: Conformational changes in the transmembrane

protein FecR lead to altered transcription of the ferric citrate transport

genes in Escherichia coli. J. Bacteriol. 177, 3320–3322

63. Enz, S., Mahren, S., Stroeher, U. H., and Braun, V. (2000) Surface

signaling in ferric citrate transport gene induction: Interaction of the

FecA, FecR, and FecI regulatory proteins. J. Bacteriol. 182, 637–646

64. Viklund, H., Bernsel, A., Skwark, M., and Elofsson, A. (2008) SPOCTOPUS: A combined predictor of signal peptides and membrane protein

topology. Bioinformatics 24, 2928–2929

65. Bastiaansen, K. C., Van Ulsen, P., Wijtmans, M., Bitter, W., and Llamas,

M. A. (2015) Self-cleavage of the Pseudomonas aeruginosa cell-surface

signaling anti-sigma factor FoxR occurs through an N-O acyl rearrangement. J. Biol. Chem. 290, 12237–12246

66. Stiefel, A., Mahren, S., Ochs, M., Schindler, P. T., Enz, S., and Braun, V.

(2001) Control of the ferric citrate transport system of Escherichia coli:

Mutations in region 2.1 of the FecI extracytoplasmic-function sigma

factor suppress mutations in the FecR transmembrane regulatory protein. J. Bacteriol. 183, 162–170

67. Braun, V., Mahren, S., and Sauter, A. (2006) Gene regulation by transmembrane signaling. Biometals 19, 103–113

68. Ellermeier, C. D., and Losick, R. (2006) Evidence for a novel protease

governing regulated intramembrane proteolysis and resistance to antimicrobial peptides in Bacillus subtilis. Genes Dev. 20, 1911–1922

69. Liu, L. P., and Deber, C. M. (1998) Uncoupling hydrophobicity and

helicity in transmembrane segments. α-helical propensities of the amino

acids in non-polar environments. J. Biol. Chem. 273, 23645–23648

70. Krogh, A., Larsson, B., Von Heijne, G., and Sonnhammer, E. L. L.

(2001) Predicting transmembrane protein topology with a hidden

Markov model: Application to complete genomes. J. Mol. Biol. 305,

567–580

71. Strisovsky, K. (2016) Why cells need intramembrane proteases – a

mechanistic perspective. FEBS J. 283, 1837–1845

72. Stojiljkovic, I., Bäumler, A. J., and Hantke, K. (1994) Fur regulon ingramnegative bacteria: Identification and characterization of new ironregulated Escherichia coli genes by a fur titration assay. J. Mol. Biol.

236, 531–545

73. Newman, D. L., and Shapiro, J. A. (1999) Differential fiu-lacZ fusion

regulation linked to Escherichia coli colony development. Mol. Microbiol. 33, 18–32

74. Griggs, D. W., and Konisky, J. (1989) Mechanism for iron-regulated

transcription of the Escherichia coli cir gene: Metal-dependent binding

of fur protein to the promoters. J. Bacteriol. 171, 1048–1054

75. Hunt, M. D., Pettis, G. S., and McIntosh, M. A. (1994) Promoter and

operator determinants for fur-mediated iron regulation in the bidirectional fepA-fes control region of the Escherichia coli enterobactin gene

system. J. Bacteriol. 176, 3944–3955

76. Andrews, S. C., Robinson, A. K., and Rodríguez-Quiñones, F. (2003)

Bacterial iron homeostasis. FEMS Microbiol. Rev. 27, 215–237

77. van Heeswijk, W. C., Westerhoff, H. V., and Boogerd, F. C.

(2013) Nitrogen assimilation in Escherichia coli: Putting molecular

data into a systems perspective. Microbiol. Mol. Biol. Rev. 77,

628–695

78. Bhagwat, S. R., Hajela, K., and Kumar, A. (2018) Proteolysis to identify

protease substrates: Cleave to decipher. Proteomics 18, 1800011

79. Tsumagari, K., Chang, C.-H., and Ishihama, Y. (2021) Exploring the

landscape of ectodomain shedding by quantitative protein terminomics.

iScience 24, 102259

80. Blum, S. E., Goldstone, R. J., Connolly, J. P. R., Répérant-Ferter, M.,

Germon, P., Inglis, N. F., Krifucks, O., Mathur, S., Manson, E., Mclean,

K., Rainard, P., Roe, A. J., Leitner, G., and Smith, D. G. E. (2018) Postgenomics characterization of an essential genetic determinant of

mammary pathogenic Escherichia coli. mBio 9, 1–11

81. Miller, J. H. (1972) Experiments in Molecular Genetics, Cold Spring

Harbor Laboratory, New York, NY

82. Hizukuri, Y., and Akiyama, Y. (2012) PDZ domains of RseP are not

essential for sequential cleavage of RseA or stress-induced σE activation

in vivo. Mol. Microbiol. 86, 1232–1245

83. Masuda, T., Tomita, M., and Ishihama, Y. (2008) Phase transfer

surfactant-aided trypsin digestion for membrane proteome analysis. J.

Proteome Res. 7, 731–740

84. Rappsilber, J., Mann, M., and Ishihama, Y. (2007) Protocol for micropurification, enrichment, pre-fractionation and storage of peptides for

proteomics using StageTips. Nat. Protoc. 2, 1896–190684

85. Adachi, J., Hashiguchi, K., Nagano, M., Sato, M., Sato, A., Fukamizu, K.,

Ishihama, Y., and Tomonaga, T. (2016) Improved proteome and phosphoproteome analysis on a cation exchanger by a combined acid and salt

gradient. Anal. Chem. 88, 7899–7903

86. McAlister, G. C., Nusinow, D. P., Jedrychowski, M. P., Wühr, M.,

Huttlin, E. L., Erickson, B. K., Rad, R., Haas, W., and Gygi, S. P. (2014)

MultiNotch MS3 enables accurate, sensitive, and multiplexed detection

of differential expression across cancer cell line proteomes. Anal. Chem.

86, 7150–7158

87. Cox, J., and Mann, M. (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteomewide protein quantification. Nat. Biotechnol. 26, 1367–1372

88. Tyanova, S., Temu, T., and Cox, J. (2016) The MaxQuant computational

platform for mass spectrometry-based shotgun proteomics. Nat. Protoc.

11, 2301–2319

89. Mori, H., Sakashita, S., Ito, J., Ishii, E., and Akiyama, Y. (2018) Identification and characterization of a translation arrest motif in VemP by

systematic mutational analysis. J. Biol. Chem. 293, 2915–2926

90. Akiyama, K., Hizukuri, Y., and Akiyama, Y. (2017) Involvement of a

conserved GFG motif region in substrate binding by RseP, an Escherichia coli S2P protease. Mol. Microbiol. 104, 737–751

91. Hizukuri, Y., Akiyama, K., and Akiyama, Y. (2017) Biochemical characterization of function and structure of RseP, an Escherichia coli S2P

protease. Methods Enzymol. 584, 1–33

92. Moriya, Y., Kawano, S., Okuda, S., Watanabe, Y., Matsumoto, M.,

Takami, T., Kobayashi, D., Yamanouchi, Y., Araki, N., Yoshizawa, A. C.,

Tabata, T., Iwasaki, M., Sugiyama, N., Tanaka, S., Goto, S., et al. (2019)

The jPOST environment: An integrated proteomics data repository and

database. Nucleic Acids Res. 47, D1218–D1224

93. Sonnhammer, E. L., von Heijne, G., and Krogh, A. (1998) A hidden

Markov model for predicting transmembrane helices in protein sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol. 6, 175–182

94. Silhavy, T., Berman, M., and Enquist, L. (1984) Experiments with Gene

Fusions, Cold Spring Harbor Laboratory Press, Cold Spring Harbor,

NewYork

95. Akiyama, Y., Ogura, T., and Ito, K. (1994) Involvement of FtsH in

protein assembly into and through the membrane. I. Mutations that

reduce retention efficiency of a cytoplasmic reporter. J. Biol. Chem. 269,

5218–5224

96. Mori, H., and Ito, K. (2006) The long α-helix of SecA is important for

the ATPase coupling of translocation. J. Biol. Chem. 281, 36249–36256

J. Biol. Chem. (2021) 296 100673

17

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

E. coli RseP-catalyzed intramembrane proteolysis of FecR

97. Datsenko, K. A., and Wanner, B. L. (2000) One-step inactivation of

chromosomal genes in Escherichia coli K-12 using PCR products. Proc.

Natl. Acad. Sci. U. S. A. 97, 6640–6645

98. Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M.,

Datsenko, K. A., Tomita, M., Wanner, B. L., and Mori, H. (2006)

Construction of Escherichia coli K-12 in-frame, single-gene knockout

mutants: the Keio collection. Mol. Syst. Biol. 2, 0008

99. Kihara, A., Akiyama, Y., and Ito, K. (1995) FtsH is required for proteolytic elimination of uncomplexed forms of SecY, an essential protein

translocase subunit. Proc. Natl. Acad. Sci. U. S. A. 92, 4532–4536

100. Guzman, L. M., Belin, D., Carson, M. J., and Beckwith, J. (1995) Tight

regulation, modulation, and high-level expression by vectors containing

the arabinose PBAD promoter. J. Bacteriol. 177, 4121–4130

101. Kanehara, K., Ito, K., and Akiyama, Y. (2003) YaeL proteolysis of RseA is

controlled by the PDZ domain of YaeL and a Gln-rich region of RseA.

EMBO J. 22, 6389–6398

18 J. Biol. Chem. (2021) 296 100673

102. Koop, A. H., Hartley, M. E., and Bourgeois, S. (1987) A low-copynumber vector utilizing β-galactosidase for the analysis of gene control

elements. Gene 52, 245–256

103. Prentk, P., and Krisch, H. M. (1984) In vitro insertional mutagenesis

with a selectable DNA fragment. Gene 29, 303–313

104. Cherepanov, P. P., and Wackernagel, W. (1995) Gene disruption in

Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158,

9–14

105. Sakoh, M., Ito, K., and Akiyama, Y. (2005) Proteolytic activity of HtpX, a

membrane-bound and stress-controlled protease from Escherichia coli. J.

Biol. Chem. 280, 33305–33310

106. Yoshitani, K., Hizukuri, Y., and Akiyama, Y. (2019) An in vivo

protease activity assay for investigating the functions of

the Escherichia coli membrane protease HtpX. FEBS Lett. 593,

842–851

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る