リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Redundant roles of EGFR ligands in the ERK activation waves during collective cell migration」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Redundant roles of EGFR ligands in the ERK activation waves during collective cell migration

Lin, Shuhao Hirayama, Daiki Maryu, Gembu Matsuda, Kimiya Hino, Naoya Deguchi, Eriko Aoki, Kazuhiro Iwamoto, Ryo Terai, Kenta Matsuda, Michiyuki 京都大学 DOI:10.26508/lsa.202101206

2022.01

概要

Epidermal growth factor receptor (EGFR) plays a pivotal role in collective cell migration by mediating cell-to-cell propagation of extracellular signal-regulated kinase (ERK) activation. Here, we aimed to determine which EGFR ligands mediate the ERK activation waves. We found that epidermal growth factor (EGF)–deficient cells exhibited lower basal ERK activity than the cells deficient in heparin-binding EGF (HBEGF), transforming growth factor alpha (TGFα) or epiregulin (EREG), but all cell lines deficient in a single EGFR ligand retained the ERK activation waves. Surprisingly, ERK activation waves were markedly suppressed, albeit incompletely, only when all four EGFR ligands were knocked out. Re-expression of the EGFR ligands revealed that all but HBEGF could restore the ERK activation waves. Aiming at complete elimination of the ERK activation waves, we further attempted to knockout NRG1, a ligand for ErbB3 and ErbB4, and found that NRG1-deficiency induced growth arrest in the absence of all four EGFR ligand genes. Collectively, these results showed that EGFR ligands exhibit remarkable redundancy in the propagation of ERK activation waves during collective cell migration.

この論文で使われている画像

参考文献

Mayor R, Etienne-Manneville S (2016) The front and rear of collective cell

migration. Nat Rev Mol Cell Biol 17: 97–109. doi:10.1038/nrm.2015.14

Aikin TJ, Peterson AF, Pokrass MJ, Clark HR, Regot S (2020) MAPK activity

dynamics regulate non-cell autonomous effects of oncogene

expression. Elife 9: e60541. doi:10.7554/eLife.60541

Aoki K, Kondo Y, Naoki H, Hiratsuka T, Itoh RE, Matsuda M (2017) Propagating

wave of ERK activation orients collective cell migration. Dev Cell 43:

305–317.e5. doi:10.1016/j.devcel.2017.10.016

Aoki K, Kumagai Y, Sakurai A, Komatsu N, Fujita Y, Shionyu C, Matsuda M (2013)

Stochastic ERK activation induced by noise and cell-to-cell

propagation regulates cell density-dependent proliferation. Mol Cell

52: 529–540. doi:10.1016/j.molcel.2013.09.015

Aoki K, Matsuda M (2009) Visualization of small GTPase activity with

fluorescence resonance energy transfer-based biosensors. Nat

Protoc 4: 1623–1631. doi:10.1038/nprot.2009.175

Aoki K, Yamada M, Kunida K, Yasuda S, Matsuda M (2011) Processive

phosphorylation of ERK MAP kinase in mammalian cells. Proc Natl

Acad Sci U S A 108: 12675–12680. doi:10.1073/pnas.1104030108

Boocock D, Hino N, Ruzickova N, Hirashima T, Hannezo E (2021) Theory of

mechanochemical patterning and optimal migration in cell

monolayers. Nat Phys 17: 267–274. doi:10.1038/s41567-020-01037-7

Das T, Safferling K, Rausch S, Grabe N, Boehm H, Spatz JP (2015) A molecular

mechanotransduction pathway regulates collective migration of

epithelial cells. Nat Cell Biol 17: 276–287. doi:10.1038/ncb3115

Draper BK, Komurasaki T, Davidson MK, Nanney LB (2003) Epiregulin is more

potent than EGF or TGFalpha in promoting in vitro wound closure due

to enhanced ERK/MAPK activation. J Cell Biochem 89: 1126–1137.

doi:10.1002/jcb.10584

Naito Y, Hino K, Bono H, Ui-Tei K (2015) CRISPRdirect: Software for designing

CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics

31: 1120–1123. doi:10.1093/bioinformatics/btu743

Nanba D, Toki F, Barrandon Y, Higashiyama S (2013) Recent advances in the

epidermal growth factor receptor/ligand system biology on skin

homeostasis and keratinocyte stem cell regulation. J Dermatol Sci 72:

81–86. doi:10.1016/j.jdermsci.2013.05.009

Ponsioen B, Post JB, Buissant des Amorie JR, Laskaris D, van Ineveld RL,

Kersten S, Bertotti A, Sassi F, Sipieter F, Cappe B, et al (2021)

Quantifying single-cell ERK dynamics in colorectal cancer organoids

reveals EGFR as an amplifier of oncogenic MAPK pathway signalling.

Nat Cell Biol 23: 377–390. doi:10.1038/s41556-021-00654-5

Prince RN, Schreiter ER, Zou P, Wiley HS, Ting AY, Lee RT, Lauffenburger DA

(2010) The heparin-binding domain of HB-EGF mediates localization

to sites of cell-cell contact and prevents HB-EGF proteolytic release. J

Cell Sci 123: 2308–2318. doi:10.1242/jcs.058321

Reffay M, Parrini MC, Cochet-Escartin O, Ladoux B, Buguin A, Coscoy S,

Amblard F, Camonis J, Silberzan P (2014) Interplay of RhoA and

mechanical forces in collective cell migration driven by leader cells.

Nat Cell Biol 16: 217–223. doi:10.1038/ncb2917

Riese DJ 2nd, Cullum RL (2014) Epiregulin: Roles in normal physiology and

cancer. Semin Cell Dev Biol 28: 49–56. doi:10.1016/j.semcdb.2014.03.005

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T,

Preibisch S, Rueden C, Saalfeld S, Schmid B, et al (2012) Fiji: An opensource platform for biological-image analysis. Nat Methods 9:

676–682. doi:10.1038/nmeth.2019

Dukes JD, Whitley P, Chalmers AD (2011) The MDCK variety pack: Choosing the

right strain. BMC Cell Biol 12: 43. doi:10.1186/1471-2121-12-43

Schneider MR, Werner S, Paus R, Wolf E (2008) Beyond wavy hairs: The

epidermal growth factor receptor and its ligands in skin biology and

pathology. Am J Pathol 173: 14–24. doi:10.2353/ajpath.2008.070942

Roles of EGFR ligands in the ERK waves

https://doi.org/10.26508/lsa.202101206

Lin et al.

vol 5 | no 1 | e202101206

12 of 13

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Shukla P, Vogl C, Wallner B, Rigler D, Müller M, Macho-Maschler S (2015) Highthroughput mRNA and miRNA profiling of epithelial-mesenchymal

transition in MDCK cells. BMC genomics 16: 944. doi:10.1186/s12864015-2036-9

Singh B, Carpenter G, Coffey RJ (2016) EGF receptor ligands: Recent advances.

F1000Res 5: F1000. doi:10.12688/f1000research.9025.1

Singh B, Coffey RJ (2014) From wavy hair to naked proteins: The role of

transforming growth factor alpha in health and disease. Semin Cell

Dev Biol 28: 12–21. doi:10.1016/j.semcdb.2014.03.003

Sumiyama K, Kawakami K, Yagita K (2010) A simple and highly efficient

transgenesis method in mice with the Tol2 transposon system and

cytoplasmic microinjection. Genomics 95: 306–311. doi:10.1016/

j.ygeno.2010.02.006

Sunnarborg SW, Hinkle CL, Stevenson M, Russell WE, Raska CS, Peschon JJ,

Castner BJ, Gerhart MJ, Paxton RJ, Black RA, et al (2002) Tumor necrosis

factor-alpha converting enzyme (TACE) regulates epidermal growth

factor receptor ligand availability. J Biol Chem 277: 12838–12845.

doi:10.1074/jbc.M112050200

Sveen K (2004) An introduction to MatPIV 1.6.1. Mechanics and Applied

Mathematics http://urn.nb.no/URN:NBN:no-23418

Takazaki R, Shishido Y, Iwamoto R, Mekada E (2004) Suppression of the

biological activities of the epidermal growth factor (EGF)-like domain

by the heparin-binding domain of heparin-binding EGF-like growth

factor. J Biol Chem 279: 47335–47343. doi:10.1074/jbc.M408556200

Roles of EGFR ligands in the ERK waves

Lin et al.

Taylor SR, Markesbery MG, Harding PA (2014) Heparin-binding epidermal

growth factor-like growth factor (HB-EGF) and proteolytic processing

by a disintegrin and metalloproteinases (ADAM): A regulator of

several pathways. Semin Cell Dev Biol 28: 22–30. doi:10.1016/

j.semcdb.2014.03.004

Tinevez JY, Perry N, Schindelin J, Hoopes GM, Reynolds GD, Laplantine E,

Bednarek SY, Shorte SL, Eliceiri KW (2017) TrackMate: An open and

extensible platform for single-particle tracking. Methods 115: 80–90.

doi:10.1016/j.ymeth.2016.09.016

Wilson KJ, Gilmore JL, Foley J, Lemmon MA, Riese DJ 2nd (2009) Functional

selectivity of EGF family peptide growth factors: Implications for

cancer. Pharmacol Ther 122: 1–8. doi:10.1016/j.pharmthera.2008.11.008

Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat

Rev Mol Cell Biol 2: 127–137. doi:10.1038/35052073

Yusa K, Rad R, Takeda J, Bradley A (2009) Generation of transgene-free

induced pluripotent mouse stem cells by the piggyBac transposon.

Nat Methods 6: 363–369. doi:10.1038/nmeth.1323

Zeng F, Harris RC (2014) Epidermal growth factor, from gene organization to

bedside. Semin Cell Dev Biol 28: 2–11. doi:10.1016/j.semcdb.2014.01.011

License: This article is available under a Creative

Commons License (Attribution 4.0 International, as

described at https://creativecommons.org/

licenses/by/4.0/).

https://doi.org/10.26508/lsa.202101206

vol 5 | no 1 | e202101206

13 of 13

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る