リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A Mohr-Coulomb-Vilar model for constitutive relationship in root-soil interface under changing suction」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A Mohr-Coulomb-Vilar model for constitutive relationship in root-soil interface under changing suction

友部 遼 Haruka Tomobe 東京工業大学 DOI:https://doi.org/10.1016/j.sandf.2021.03.005

2021.06

概要

Understanding mechanical interactions at the root-soil interface is essential to predict the erosion of vegetated slopes. Recently, the shear strength of vegetatedil under changing hydraulic conditions has been measured and modeled; however, root-soil interfaces have not been investigated under changing hydraulic conditions. This paper proposes (1) a novel pullout apparatus to measure the shear strength at the root-soil interface under changing suction, (2) a Mohr-Coulomb-Vilar (MCV) shear strength model of root-soil interfaces, and (3) a numerical simulation using Node-To-Segment (NTS) approach along with Finite Element Method (FEM). The pullout tests were ver- ified using the numerical simulation, and the results showed that the combination of the MCV model and NTS/FEM approach can accu- rately predict the shear behavior of root-soil interfaces under changing suction. In addition, we experimentally evaluated the pullout problem of roots and showed that the present method provides reasonably predicts root-pullout problems even when the suction is chan- ged during the pullout process. The current method, therefore, can be used for predicting root-soil interface dynamics under varying suction and soil pressure by only adding two additional parameters of the Vilar model.

この論文で使われている画像

参考文献

Abe, K., Ziemer, R.R., 1991. Effect of tree roots on a shear zone: modeling reinforced shear stress. Can. J. For. Res. 21, 1012–1019.

Bischetti, G.B., Chiaradia, E.A., D’Agostino, V., Simonato, T., 2010. Quantifying the effect of brush layering on slope stability. Ecol. Eng. 36, 258–264.

Dupuy, L.X., Fourcaud, T., Lac, P., Stokes, A., 2007. A generic 3D finite element model of tree anchorage integrating soil mechanics and real root system architecture. Am. J. Bot. 94, 1506–1514.

Eab, K.H., Likitlersuang, S., Takahashi, A., 2015. Laboratory and modelling investigation of root-reinforced system for slope stabilisa- tion. Soils Found. 55, 1270–1281.

Endo, T., 1980. Effect of tree roots upon the shear strength of soil. For. For. Prod. Res. Inst. 14, 112–115.

Ghavami, K., Toledo Filho, R.D., Barbosa, N.P., 1999. Behaviour of composite soil reinforced with natural fibres. Cem. Concr. Compos. 21, 39–48.

Giadrossich, F., Stokes, A., Schwarz, M., Cohen, D., Cislaghi, A., Vergani, C., Hubble, T., Phillips, C., 2017. Methods to measure the mechanical behaviour of tree roots: A review. Ecol. Eng. 109, 256–271

Hejazi, S.M., Sheikhzadeh, M., Abtahi, S.M., Zadhoush, A., 2012. A simple review of soil reinforcement by using natural and synthetic fibers. Constr. Build. Mater.

Huang, R., Becker, A.A., Jones, I.A., 2012. Modelling cell wall growth using a fibre-reinforced hyperelasticviscoplastic constitutive law. J. Mech. Phys. Solids 60, 750–783.

Ibraim, E., Diambra, A., Muir Wood, D., Russell, A.R., 2010. Static liquefaction of fibre reinforced sand under monotonic loading. Geotext. Geomembranes 28, 374–385.

Ji, X., Cong, X., Dai, H., Zhang, A., Chen, L., 2018. Studying the mechanical properties of the soil-root interface using the pullout test method. J. Mt. Sci. 15, 309–322.

Jin, K., Wang, H., Tao, J., Du, D., 2019. Mechanical analysis and progressive failure prediction for fibre metal laminates using a 3D constitutive model. Compos. Part A Appl. Sci. Manuf. 124, 105490.

Jotisankasa, A., Rurgchaisri, N., 2018. Geotextiles and Geomembranes Shear strength of interfaces between unsaturated soils and composite geotextile with polyester yarn reinforcement. Geotext. Geomembranes 46, 338–353. https://doi.org/10.1016/j.geotexmem.2017.12.003.

Kim, G.-W., Kim, M.-S., Do, G.-S., Kang, S.-W., Lee, S.-H., Sagara, Y., Lee, I.-B., Bae, Y.-H., 2008. Determination of the Viscoelastic Properties of Apple Flesh under Quasi-Static Compression Based on Finite Element Method Optimization. Food Sci. Technol. Res. 14, 221–231.

Leung, A.K., Garg, A., Ng, C.W.W., 2015. Effects of plant roots on soil- water retention and induced suction in vegetated soil. Eng. Geol. 193, 187–197.

Liang, T., Bengough, A.G., Knappett, J.A., MuirWood, D., Loades, K. W., Hallett, P.D., Boldrin, D., Leung, A.K., Meijer, G.J., 2017. Scaling of the reinforcement of soil slopes by living plants in a geotechnical centrifuge. Ecol. Eng. 109, 207–227.

Likos, W.J., Wayllace, A., Godt, J., Lu, N., 2018. Modified Direct Shear Apparatus for Unsaturated Sands at Low Suction and Stress 33, 286– 298.

Liu, W.N., Meschke, G., Mang, H.A., 2003. Algorithmic stabilization of FE analyses of 2D frictional contact problems with large slip. Comput. Methods Appl. Mech. Eng. 192, 2099–2124.

Mahannopkul, K., Jotisankasa, A., 2019. Influences of root concentration and suction on Chrysopogon zizanioides reinforcement of soil. Soils Found. 59, 500–516.

Mickovski, S.B., Stokes, A., Beek, R. Van, Ghestem, M., Fourcaud, T., 2011. Simulation of direct shear tests on rooted and non-rooted soil using finite element analysis. Ecol. Eng. 37, 1523–1532.

Nazari, G.M., Jafari, A., Mohtasebi, S.S., Tabatabaeefar, A., Sharifi, A., O’Dogherty, M.J., Rafiee, S., Richard, G., 2008. Effects of moisture content and level in the crop on the engineering properties of alfalfa stems. Biosyst. Eng. 101, 199–208.

Ng, C.W.W., Woon, K.X., Leung, A.K., Chu, L.M., 2013. Experimental investigation of induced suction distribution in a grass-covered soil 52, 219–223.

Ni, J.J., Leung, A.K., Ng, C.W.W., Shao, W., 2018. Modelling hydro- mechanical reinforcements of plants to slope stability 95, 99–109.

Ni, J.J., Leung, A.K., Ng, C.W.W., 2019. Unsaturated hydraulic properties of vegetated soil under single and mixed planting condi- tions. Geotechnique 69 (6), 554–559.

Ookawa, T., Hobo, T., Yano, M., Murata, K., Ando, T., Miura, H., Asano, K., Ochiai, Y., Ikeda, M., Nishitani, R., Ebitani, T., Ozaki, H., Angeles, E.R., Hirasawa, T., Matsuoka, M., 2010. New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat. Commun. 1 (8), 1–11.

Pallewattha, M., Indraratna, B., Heitor, A., Rujikiatkamjorn, C., 2019. Shear strength of a vegetated soil incorporating both root reinforce- ment and suction. Transp. Geotech. 18, 72–82.

Schwarz, M., Cohen, D., Or, D., 2011. Pullout tests of root analogs and natural root bundles in soil: Experiments and modeling. J. Geophys. Res. 116, 1–14.

Simo, J.C., Wriggers, P., Taylor, R.L., 1985. A perturbed Lagrangian formulation for the finite element solution of contact problems. Comput. Methods Appl. Mech. Eng. 50, 163–180.

Song, L., Li, J.H., Zhou, T., Fredlund, D.G., 2017. Experimental study on unsaturated hydraulic properties of vegetated soil 103, 207–216.

Sugiman, S., Crocombe, A.D., Katnam, K.B., 2011. Investigating the static response of hybrid fibre-metal laminate doublers loaded in tension. Compos. Part B Eng. 42, 1867–1884.

Tomobe, H., Fujisawa, K., Murakami, A., 2016. Shear tests and modeling of root-soil contact interface by using novel pullout test. IDRE J. 84, 223–232.

Tomobe, H., Fujisawa, K., Murakami, A., 2019. Experiments and FE- analysis of 2-D root-soil contact problems based on node-to-segment approach. Soils Found. in press.

Vilar, O.M., 2006. A simplified procedure to estimate the shear strength envelope of unsaturated soils. Can. Geotech. J. 43, 1088–1095.

Vladimirov, I.N., Pietryga, M.P., Reese, S., 2008. On the modelling of non-linear kinematic hardening at finite strains with application to springback-comparison of time integration algorithms. Int. J. Numer. Methods Eng. 75, 1–28.

Vladimirov, I.N., Pietryga, M.P., Reese, S., 2010. Anisotropic finite elastoplasticity with nonlinear kinematic and isotropic hardening and application to sheet metal forming. Int. J. Plast. 26, 659–687.

Voottipuex, P., Bergado, D.T., Mairaeng, W., Chucheepsakul, S., Modmoltin, C., 2008. Soil reinforcement with combination roots system: A case study of vetiver grass and Acacia Mangium Willd. Lowl. Technol. Int. 10, 56–67.

Wijaya, M., Leong, E.C., Rahardjo, H., 2015. Effect of shrinkage on air- entry value of soils. Soils Found. 55 (1), 166–180.

Wriggers, P., 2006. Computational contact mechanics, 2nd ed. Springer. Springer, Berlin Heidelberg, Berlin, Heidelberg.

Zavarise, G., Lorenzis, L.D., 2009. A modified node-to-segment algorithm passing the contact patch test. Int. J. Numer. Methods Eng. 79, 379– 416.

Zhang, L.L., Fredlund, D.G., Fredlund, M.D., Ward Wilson, G., 2013. Modeling the unsaturated soil zone in slope stability analysis. Can. Geotech. J. 51, 1384–1398.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る