リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Mechanism of Reductive Fluorination by PTFE-Decomposition Fluorocarbon Gases for WO₃」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Mechanism of Reductive Fluorination by PTFE-Decomposition Fluorocarbon Gases for WO₃

Yamamoto, Hiroki Tada, Kohei Hwang, Jinkwang Hirai, Daigorou Hiroi, Zenji Matsumoto, Kazuhiko Hagiwara, Rika 京都大学 DOI:10.1021/acs.inorgchem.2c03761

2023.02.06

概要

Reductive fluorination, which entails the substitution of O²⁻ from oxide compounds with F⁻ from fluoropolymers, is considered a practical approach for preparing transition-metal oxyfluorides. However, the current understanding of the fundamental reaction paths remains limited due to the analytical complexities posed by high-temperature reactions in glassware. Therefore, to expand this knowledgebase, this study investigates the reaction mechanisms behind the reductive fluorination of WO₃ using polytetrafluoroethylene (PTFE) in an Ni reactor. Here, we explore varied reaction conditions (temperature, duration, and F/W ratio) to suppress the formation of carbon byproducts, minimize the dissipation of fluorine-containing tungsten (VI) compounds, and achieve a high fluorine content. The gas–solid reaction paths are analyzed using infrared spectroscopy, which revealed tetrafluoroethylene (C₂F₄), hexafluoropropene (C₃F₆), and iso-octafluoroisobutene (i-C₄F₈) to be the reactive components in the PTFE-decomposition gas during the reactions with WO₃ at 500 °C. CO₂ and CO are further identified as gaseous byproducts of the reaction evincing that the reaction is prompted by difluorocarbene (:CF₂) formed after the cleavage of C═C bonds in i-C₄F₈, C₃F₆, and C₂F₄ upon contact with the WO₃ surface. The solid–solid reaction path is established through a reaction between WO₃ and WO₃–xFx where solid-state diffusion of O²⁻ and F⁻ is discerned at 500 °C.

この論文で使われている画像

参考文献

(1) Greiner, M. T.; Chai, L.; Helander, M. G.; Tang, W.-M.; Lu, Z.-H. Transition metal

oxide work functions: the influence of cation oxidation state and oxygen vacancies. Adv.

Funct. Mater. 2012, 22, 4557-4568.

(2) Sathiya, M.; Rousse, G.; Ramesha, K.; Laisa, C. P.; Vezin, H.; Sougrati, M. T.; Doublet,

M. L.; Foix, D.; Gonbeau, D.; Walker, W.; et al. Reversible anionic redox chemistry in

high-capacity layered-oxide electrodes. Nat. Mater. 2013, 12, 827-835.

(3) Meyer, J.; Hamwi, S.; Kröger, M.; Kowalsky, W.; Riedl, T.; Kahn, A. Transition metal

oxides for organic electronics: energetics, device physics and applications. Adv. Mater.

2012, 24, 5408-5427.

(4) Kageyama, H.; Hayashi, K.; Maeda, K.; Attfield, J. P.; Hiroi, Z.; Rondinelli, J. M.;

Poeppelmeier, K. R. Expanding frontiers in materials chemistry and physics with multiple

anions. Nature Communications 2018, 9, 772.

(5) Ebbinghaus, S. G.; Abicht, H.-P.; Dronskowski, R.; Müller, T.; Reller, A.; Weidenkaff,

A. Perovskite-related oxynitrides – Recent developments in synthesis, characterisation

and investigations of physical properties. Prog. Solid State Chem. 2009, 37, 173-205.

(6) Tsujimoto, Y.; Yamaura, K.; Takayama-Muromachi, E. Oxyfluoride chemistry of

layered perovskite compounds. Appl. Sci. 2012, 2, 206-219.

(7) Pei, Y.; Shi, X.; LaLonde, A.; Wang, H.; Chen, L.; Snyder, G. J. Convergence of

electronic bands for high performance bulk thermoelectrics. Nature 2011, 473, 66-69.

(8) Li, Y.-Y.; Wang, W.-J.; Wang, H.; Lin, H.; Wu, L.-M. Mixed-anion inorganic

compounds: a favorable candidate for infrared nonlinear optical materials. Cryst. Growth

Des. 2019, 19, 4172-4192.

(9) Xiao, J.-R.; Yang, S.-H.; Feng, F.; Xue, H.-G.; Guo, S.-P. A review of the structural

chemistry and physical properties of metal chalcogenide halides. Coord. Chem. Rev. 2017,

347, 23-47.

(10) Clemens, O.; Slater, P. R. Topochemical modifications of mixed metal oxide

compounds by low-temperature fluorination routes. Rev. Inorg. Chem. 2013, 33, 105-117.

(11) Francesconi, M. G.; Greaves, C. Anion substitutions and insertions in copper oxide

superconductors. Supercond. Sci. Technol. 1997, 10, A29-A37.

(12) McCabe, E. E.; Greaves, C. Fluorine insertion reactions into pre-formed metal

oxides. J. Fluorine Chem. 2007, 128, 448-458.

(13) Hirai, D.; Sawai, O.; Nunoura, T.; Hiroi, Z. Facile synthetic route to transition metal

oxyfluorides via reactions between metal oxides and PTFE. J. Fluorine Chem. 2018, 209,

43-48.

(14) Hirai, D.; Climent-Pascual, E.; Cava, R. J. Superconductivity in WO2.6F0.4

synthesized by reaction of WO3 with teflon. Phys. Rev. B 2011, 84, 174519.

(15) Kobayashi, Y.; Tian, M.; Eguchi, M.; Mallouk, T. E. Ion-exchangeable, electronically

conducting layered perovskite oxyfluorides. J. Am. Chem. Soc. 2009, 131, 9849-9855.

(16) Ai-Mamouri, M.; Edwards, P. P.; Greaves, C.; Slaski, M. Synthesis and

superconducting properties of the strontium copper oxy-fluoride Sr2CuO2F2+δ. Nature

1994, 369, 382-384.

(17) Slater, P. R. Poly(vinylidene fluoride) as a reagent for the synthesis of K2NiF4-related

inorganic oxide fluorides. J. Fluorine Chem. 2002, 117, 43-45.

(18) Pinlac, R. A. F.; Stern, C. L.; Poeppelmeier, K. R. New layered oxide-fluoride

perovskites: KNaNbOF5 and KNaMO2F4 (M = Mo6+, W6+). Crystals 2011, 1, 3-14.

(19) Troyanchuk, I. O.; Kasper, N. V.; Mantytskaya, O. S.; Shapovalova, E. F. Highpressure synthesis of some perovskite — Like compounds with a mixed anion type. Mater.

Res. Bull. 1995, 30, 421-425.

(20) Katsumata, T.; Nakashima, M.; Umemoto, H.; Inaguma, Y. Synthesis of the novel

perovskite-type oxyfluoride PbScO2F under high pressure and high temperature. J. Solid

State Chem. 2008, 181, 2737-2740.

(21) Galasso, F.; Darby, W. Preparation, structure, and properties of K2NbO3F. J. Phys.

Chem. 1962, 66, 1318-1320.

(22) Functionalized inorganic fluorides: synthesis, characterization & properties of

nanostructured solids, 1st ed.; Tressaud, A., Ed.; John Wiley & Sons: New Jersey, 2010.

(23) Lange, M. A.; Krysiak, Y.; Hartmann, J.; Dewald, G.; Cerretti, G.; Tahir, M. N.;

Panthöfer, M.; Barton, B.; Reich, T.; Zeier, W. G.; et al. Solid state fluorination on the

minute scale: synthesis of WO3−xFx with photocatalytic activity. Adv. Funct. Mater. 2020,

30, 1909051.

(24) Lange, M. A.; Khan, I.; Opitz, P.; Hartmann, J.; Ashraf, M.; Qurashi, A.; Prädel, L.;

Panthöfer, M.; Cossmer, A.; Pfeifer, J.; et al. A generalized method for high-speed

fluorination of metal oxides by spark plasma sintering yields Ta3O7F and TaO2F with high

photocatalytic activity for oxygen evolution from water. Adv. Mater. 2021, 33, 2007434.

(25) Wang, J.; Shin, Y.; Gauquelin, N.; Yang, Y.; Lee, C.; Jannis, D.; Verbeeck, J.;

Rondinelli, J. M.; May, S. J. Physical properties of epitaxial SrMnO2.5−δFγ oxyfluoride

films. J. Phys.: Condens. Matter 2019, 31, 365602.

(26) Wen, T.; Zhou, Y.; Yang, B.; Wang, Y. Controllable Synthesis, Polymorphism and

Structure-Dependent Photoluminescence Properties of Europium Oxyfluorides. Eur. J.

Inorg. Chem. 2017, 2017, 5121-5126.

(27) Tsujimoto, Y.; Yamaura, K.; Hayashi, N.; Kodama, K.; Igawa, N.; Matsushita, Y.;

Katsuya, Y.; Shirako, Y.; Akaogi, M.; Takayama-Muromachi, E. Topotactic synthesis and

crystal structure of a highly fluorinated ruddlesden–popper-type iron oxide, Sr3Fe2O5+xF2–

(x ≈ 0.44). Chem. Mater. 2011, 23, 3652-3658.

(28) Wen, T.; Zhou, Y.; Guo, Y.; Zhao, C.; Yang, B.; Wang, Y. Color-tunable and singleband red upconversion luminescence from rare-earth doped Vernier phase ytterbium

oxyfluoride nanoparticles. J. Mater. Chem. C 2016, 4, 684-690.

(29) Wen, T.; Ding, R.; Zhou, Y.; Si, Y.; Yang, B.; Wang, Y. Polymorphism of erbium

oxyfluoride: selective synthesis, crystal structure, and phase-dependent upconversion

luminescence. Eur. J. Inorg. Chem. 2017, 2017, 3849-3854.

(30) Wen, T.; Li, X.; Ning, D.; Yao, J.; Yang, B.; Wang, Y. Selective synthesis,

polymorphism, reversible phase transition and structure-dependent optical functionalities

of gadolinium oxyfluorides. J. Mater. Chem. C 2018, 6, 11007-11014.

(31) Clemens, O.; Haberkorn, R.; Slater, P. R.; Beck, H. P. Synthesis and characterisation

of the SrxBa1−xFeO3−y-system and the fluorinated phases SrxBa1−xFeO2F. Solid State Sci.

2010, 12, 1455-1463.

(32) Clemens, O.; Kuhn, M.; Haberkorn, R. Synthesis and characterization of the

La1−xSrxFeO3−δ system and the fluorinated phases La1−xSrxFeO3−xFx. J. Solid State Chem.

2011, 184, 2870-2876.

(33) Moon, E. J.; Xie, Y.; Laird, E. D.; Keavney, D. J.; Li, C. Y.; May, S. J. Fluorination

of epitaxial oxides: synthesis of perovskite oxyfluoride thin films. J. Am. Chem. Soc. 2014,

136, 2224-2227.

(34) Wissel, K.; Heldt, J.; Groszewicz, P. B.; Dasgupta, S.; Breitzke, H.; Donzelli, M.;

Waidha, A. I.; Fortes, A. D.; Rohrer, J.; Slater, P. R.; et al. Topochemical fluorination of

La2NiO4+d: unprecedented ordering of oxide and fluoride ions in La2NiO3F2. Inorg. Chem.

2018, 57, 6549-6560.

(35) Juillerat, C. A.; Tsujimoto, Y.; Chikamatsu, A.; Masubuchi, Y.; Hasegawa, T.;

Yamaura, K. Fluorination and reduction of CaCrO3 by topochemical methods. Dalton

Trans. 2020, 49, 1997-2003.

(36) Chikamatsu, A.; Kawahara, K.; Shiina, T.; Onozuka, T.; Katayama, T.; Hasegawa, T.

Fabrication of fluorite-type fluoride Ba0.5Bi0.5F2.5 thin films by fluorination of perovskite

BaBiO3 precursors with poly(vinylidene fluoride). ACS Omega 2018, 3, 13141-13145.

(37) Sleight, A. W. Tungsten and molybdenum oxyfluorides of the type MO3-xFx. Inorg.

Chem. 1969, 8, 1764-1767.

(38) Reynolds, T. G.; Wold, A. Preparation and Properties of Tetragonal Tungsten

Oxyfluoride Bronzes. J. Solid State Chem. 1973, 6, 565-568.

(39) Derrington, C. E.; Godek, W. S.; Castro, C. A.; Wold, A. Preparation and

photoelectrolytic behavior of the systems tungsten oxide (WO3-x) and tungsten fluoride

oxide (WO3-xFx). Inorg. Chem. 1978, 17, 977-980.

(40) Shein, I. R.; Ivanovskii, A. L. Ab initio probing of the electronic band structure and

Fermi surface of fluorine-doped WO3 as a novel low-T C superconductor. JETP Lett.

2012, 95, 66-69.

(41) Shein, I. R.; Ivanovskii, A. L. Effect of fluorine, nitrogen, and carbon impurities on

the electronic and magnetic properties of WO3. Semiconductors 2013, 47, 740-744.

(42) Pellegrini, C.; Glawe, H.; Sanna, A. Density functional theory of superconductivity

in doped tungsten oxides. Phys. Rev. Mater. 2019, 3, 064804.

(43) Woodward, P. M.; Sleight, A. W.; Vogt, T. Ferroelectric tungsten trioxide. J. Solid

State Chem. 1997, 131, 9-17.

(44) Vogt, T.; Woodward, P. M.; Hunter, B. A. The high-temperature phases of WO3. J.

Solid State Chem. 1999, 144, 209-215.

(45) Puts, G. J.; Crouse, P.; Ameduri, B. M. Polytetrafluoroethylene: synthesis and

characterization of the original extreme polymer. Chem. Rev. 2019, 119, 1763-1805.

(46) Bezuidenhoudt, A.; Sonnendecker, P. W.; Crouse, P. L. Temperature and pressure

effects on the product distribution of PTFE pyrolysis by means of qualitative, in-line

FTIR analysis. Polym. Degrad. Stab. 2017, 142, 79-88.

(47) Poutsma, M. L. Chain elongation during thermolysis of tetrafluoroethylene and

hexafluoropropylene: Modeling of mechanistic hypotheses and elucidation of data needs.

J. Anal. Appl. Pyrolysis 2011, 92, 25-42.

(48) Simon, C. M.; Kaminsky, W. Chemical recycling of polytetrafluoroethylene by

pyrolysis. Polym. Degrad. Stab. 1998, 62, 1-7.

(49) Odochian, L.; Moldoveanu, C.; Mocanu, A. M.; Carja, G. Contributions to the

thermal degradation mechanism under nitrogen atmosphere of PTFE by TG-FTIR

analysis. Influence of the additive nature. Thermochim. Acta 2011, 526, 205-212.

(50) Bhadury, P. S.; Singh, S.; Sharma, M.; Palit, M. Flash pyrolysis of

polytetrafluoroethylene (teflon) in a quartz assembly. J. Anal. Appl. Pyrolysis 2007, 78,

288-290.

(51) Puts, G. J.; Crouse, P. L. The influence of inorganic materials on the pyrolysis of

polytetrafluoroethylene. Part 1: The sulfates and fluorides of Al, Zn, Cu, Ni, Co, Fe and

Mn. J. Fluorine Chem. 2014, 168, 260-267.

(52) Puts, G. J.; Crouse, P. L. The influence of inorganic materials on the pyrolysis of

polytetrafluoroethylene. Part 2: The common oxides of Al, Ga, In, Zn, Cu, Ni, Co, Fe,

Mn, Cr, V, Zr and La. J. Fluorine Chem. 2014, 168, 9-15.

(53) van der Walt, I. J.; Neomagus, H. W. J. P.; Nel, J. T.; Bruinsma, O. S. L.; Crouse, P.

L. A kinetic expression for the pyrolytic decomposition of polytetrafluoroethylene. J.

Fluorine Chem. 2008, 129, 314-318.

(54) Siegle, J. C.; Muus, L. T.; Lin, T.-P.; Larsen, H. A. The molecular structure of

perfluorocarbon polymers. II. pyrolysis of polytetrafluoroethylene. J. Polym. Sci. A 1964,

2, 391-404.

(55) Conesa, J. A.; Font, R. Polytetrafluoroethylene decomposition in air and nitrogen.

Polym. Eng. Sci. 2001, 41, 2137-2147.

(56) Lewis, E. E.; Naylor, M. A. Pyrolysis of Polytetrafluoroethylene. J. Am. Chem. Soc.

1947, 69, 1968-1970.

(57) Drennan, G. A.; Matula, R. A. The pyrolysis of tetrafluoroethylene. J. Phys. Chem.

1968, 72, 3462-3468.

(58) Atkinson, B.; Atkinson, V. A. The thermal decomposition of tetrafluoroethylene. J.

Chem. Soc. 1957, 2086-2094.

(59) Odochian, L.; Moldoveanu, C.; Maftei, D. TG–FTIR study on thermal degradation

mechanism of PTFE under nitrogen atmosphere and in air. Influence of the grain size.

Thermochim. Acta 2014, 598, 28-35.

(60) Arito, H.; Soda, R. Pyrolysis products of polytetrafluoroethylene and

polyfluoroethylenepropylene with reference to inhalation toxicity. Ann. Occup. Hyg.

1977, 20, 247-255.

(61) Jun, H. S.; Kim, K. N.; Park, K. Y.; Woo, S. I. Thermal degradation of

polytetrafluoroethylene in flowing helium atmosphere I. degradation rate. Korean J.

Chem. Eng. 1995, 12, 156-161.

(62) Jun, H. S.; Kim, K. N.; Park, K. Y.; Woo, S. I. Thermal degradation of

polytetrafluoroethylene in flowing helium atmosphere II. product distribution and

reaction mechanism. Korean J. Chem. Eng. 1995, 12, 183-187.

(63) Van Der Walt, I. J.; Bruinsma, O. S. L. Depolymerization of clean unfilled PTFE

waste in a continuous process. J. Appl. Polym. Sci. 2006, 102, 2752-2759.

(64) Meissner, E.; Wróblewska, A.; Milchert, E. Technological parameters of pyrolysis of

waste polytetrafluoroethylene. Polym. Degrad. Stab. 2004, 83, 163-172.

(65) Morisaki, S. Simultaneous thermogravimetry-mass spectrometry and pyrolysis—gas

chromatography of fluorocarbon polymers. Thermochim. Acta 1978, 25, 171-183.

(66) Matsumoto, K.; Hagiwara, R. Elimination of AsF3 from anhydrous HF using

AgFAsF6 as a mediator. J. Fluorine Chem. 2010, 131, 805-808.

(67) Ponikvar, M.; Stibilj, V.; Žemva, B. Daily dietary intake of fluoride by Slovenian

Military based on analysis of total fluorine in total diet samples using fluoride ion

selective electrode. Food Chem. 2007, 103, 369-374.

(68) Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J.

Chem. Phys. 1993, 98, 5648-5652.

(69) Møller, C.; Plesset, M. S. Note on an approximation treatment for many-electron

systems. Phys. Rev. 1934, 46, 618-622.

(70) M. J. Frisch, G. W. T., H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman,

G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich,

J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F.

Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings,

B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G.

Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.

Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr.,

J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N.

Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C.

Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi,

J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox,

Gaussian 2016; Gaussian, Inc.: Wallingford CT, 2016.

(71) Wiberg, K. B. Application of the pople-santry-segal CNDO method to the

cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 1968, 24,

1083-1096.

(72) Reed, A. E.; Weinstock, R. B.; Weinhold, F. Natural population analysis. J. Chem.

Phys. 1985, 83, 735-746.

(73) Nelson, C. T.; Overzet, L. J.; Goeckner, M. J. Temperature dependence of the infrared

absorption cross-sections of neutral species commonly found in fluorocarbon plasmas. J.

Vac. Sci. Technol. A 2012, 30, 021305.

(74) Blake, T. A.; Glendening, E. D.; Sams, R. L.; Sharpe, S. W.; Xantheas, S. S. Highresolution infrared spectroscopy in the 1200−1300 cm-1 region and accurate theoretical

estimates for the structure and ring-puckering barrier of perfluorocyclobutane. J. Phys.

Chem. A 2007, 111, 11328-11341.

(75) Vasekova, E.; Drage, E. A.; Smith, K. M.; Mason, N. J. FTIR spectroscopy and

radiative forcing of octafluorocyclobutane and octofluorocyclopentene. J. Quant.

Spectrosc. Radiat. Transfer 2006, 102, 418-424.

(76) Ballard, J.; Knight, R. J.; Newnham, D. A. Infrared absorption cross-sections and

integrated absorption intensities of perfluoroethane and cis-perfluorocyclobutane. J.

Quant. Spectrosc. Radiat. Transfer 2000, 66, 199-212.

(77) Brice, T. J.; LaZerte, J. D.; Hals, L. J.; Pearlson, W. H. The preparation and some

properties of the C4F8 olefins. J. Am. Chem. Soc. 1953, 75, 2698-2702.

(78) Bomse, D. S.; Berman, D. W.; Beauchamp, J. L. Energetics of the rearrangement of

neutral and ionized perfluorocyclopropane to perfluoropropylene. Use of infrared

multiphoton dissociation spectra to identify structural isomers of molecular ions. J. Am.

Chem. Soc. 1981, 103, 3967-3971.

(79) Milella, A.; Palumbo, F.; Favia, P.; Cicala, G.; d’Agostino, R. Deposition mechanism

of nanostructured thin films from tetrafluoroethylene glow discharges. Pure Appl. Chem.

2005, 77, 399-414.

(80) Burkholder, J. B.; Howard, C. J.; Hamilton, P. A. Fourier transform spectroscopy of

the ν1 and ν3 fundamental bands of CF2. J. Mol. Spectrosc. 1988, 127, 362-369.

(81) Cameron, M. R.; Kable, S. H.; Bacskay, G. B. The electronic spectroscopy of jet‐

cooled difluorocarbene (CF2): The missing Ã‐state stretching frequencies. J. Chem. Phys.

1995, 103, 4476-4483.

(82) Suzuki, I. General anharmonic force constants of carbon dioxide. J. Mol. Spectrosc.

1968, 25, 479-500.

(83) Klarenaar, B. L. M.; Engeln, R.; van den Bekerom, D. C. M.; van de Sanden, M. C.

M.; Morillo-Candas, A. S.; Guaitella, O. Time evolution of vibrational temperatures in a

CO2 glow discharge measured with infrared absorption spectroscopy. Plasma Sources Sci.

Technol. 2017, 26, 115008.

(84) Mantz, A. W.; Maillard, J. P.; Roh, W. B.; Narahari Rao, K. Ground state molecular

constants of 12C16O. J. Mol. Spectrosc. 1975, 57, 155-159.

(85) Brahms, D. L. S.; Dailey, W. P. Fluorinated carbenes. Chem. Rev. 1996, 96, 15851632.

(86) Carter, E. A.; Goddard, W. A. Correlation‐consistent singlet–triplet gaps in

substituted carbenes. J. Chem. Phys. 1988, 88, 1752-1763.

(87) Takayama, R.; Yamada, A.; Fuchibe, K.; Ichikawa, J. Synthesis of sulfanylated

difluoroalkenes:

electrophilic

difluoromethylidenation

of

dithioesters

with

difluorocarbene. Org. Lett. 2017, 19, 5050-5053.

(88) Swift, G. A.; Koc, R. Tungsten powder from carbon coated WO3 precursors. J. Mater.

Sci. 2001, 36, 803-806.

(89) Mohammadzadeh Valendar, H.; Rezaie, H.; Samim, H.; Barati, M.; Razavizadeh, H.

Reduction and carburization behavior of NiO–WO3 mixtures by carbon monoxide.

Thermochim. Acta 2014, 590, 210-218.

(90) Tan, T. L.; Lebron, G. B. Determination of carbon dioxide, carbon monoxide, and

methane concentrations in cigarette smoke by Fourier transform infrared spectroscopy. J.

Chem. Educ. 2012, 89, 383-386.

(91) Wang, S. Y.; Borden, W. T. Why is the .pi. bond in tetrafluoroethylene weaker than

that in ethylene? An ab initio investigation. J. Am. Chem. Soc. 1989, 111, 7282-7283.

(92) Uchimaru, T.; Tsuzuki, S.; Chen, L.; Mizukado, J. Computational investigation of πbond strengths in fluorinated ethylenes. J. Fluorine Chem. 2017, 194, 33-39.

(93) Fukaya, H.; Hayakawa, Y.; Okamoto, H.; Ueno, K.; Otsuka, T. Theoretical study of

disproportionation reaction of fluorinated ethylenes. J. Fluorine Chem. 2017, 200, 133141.

(94) Exner, O.; Böhm, S. Negative hyperconjugation of some fluorine containing groups.

New J. Chem. 2008, 32, 1449-1453.

Graphical Abstract (8.25 cm x 4.45 cm)

The reaction mechanisms behind the reductive fluorination of WO3 using

polytetrafluoroethylene have been explored under varied reaction conditions (temperature,

duration, and F/W ratio) to suppress the formation of carbon byproducts, minimize the

dissipation of fluorine-containing tungsten (VI) compounds, and achieve a high fluorine

content.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る