リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The molecular associations in clathrin-coated pit regulate β-arrestin-mediated MAPK signaling downstream of μ-opioid receptor」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The molecular associations in clathrin-coated pit regulate β-arrestin-mediated MAPK signaling downstream of μ-opioid receptor

Sato, Atsuko 京都大学 DOI:10.14989/doctor.k24525

2023.03.23

概要

G proteins induce analgesia upon m-opioid receptor (MOP) activation by regulating various ion channels. However, the MOP activation produces unwanted side effects, such as nausea,
gastrointestinal dysfunction, and respiratory suppressions [1]. Previous studies have demonstrated that b-arrestin 2 deficient mice
show enhanced analgesic effects and reduced adverse effects upon
MOP activation [2,3]. Therefore, bias-tuned ligands that selectively
activate the G protein-analgesic pathway while only minimally
recruiting b-arrestin 2, were proposed as ideal opioids [4e7].
However, a recent clinical study revealed that G protein-biased ligands may produce classical opioid side effects at an analgesic
dosage [8,9]. Furthermore, more recent studies reported that mutant
mice lacking b-arrestin 2 or expressing phosphorylation-deficient
MOP, which does not recruit b-arrestin 2, also presented with classical opioid side effects [10e12]. ...

この論文で使われている画像

参考文献

[1] C.L. Schmid, N.M. Kennedy, N.C. Ross, K.M. Lovell, Z. Yue, J. Morgenweck,

M.D. Cameron, T.D. Bannister, L.M. Bohn, Bias factor and therapeutic window

correlate to predict safer opioid analgesics, Cell 171 (2017) 1165e1175,

https://doi.org/10.1016/j.cell.2017.10.035, e1113.

[2] L.M. Bohn, R.J. Lefkowitz, R.R. Gainetdinov, K. Peppel, M.G. Caron, F.T. Lin,

Enhanced morphine analgesia in mice lacking beta-arrestin 2, Science 286

(1999) 2495e2498, https://doi.org/10.1126/science.286.5449.2495.

[3] K.M. Raehal, J.K. Walker, L.M. Bohn, Morphine side effects in beta-arrestin 2

knockout mice, J. Pharmacol. Exp. Therapeut. 314 (2005) 1195e1201, https://

71

A. Shiraki and S. Shimizu

Biochemical and Biophysical Research Communications 640 (2023) 64e72

gkz365.

[25] S. Shimizu, H. Fujita, Y. Sasaki, T. Tsuruyama, K. Fukuda, K. Iwai, Differential

involvement of the Npl4 zinc finger domains of SHARPIN and HOIL-1L in

linear ubiquitin chain assembly complex-mediated cell death protection, Mol.

Cell Biol. 36 (2016) 1569e1583, https://doi.org/10.1128/MCB.01049-15.

[26] Z.Y. Weinberg, M.A. Puthenveedu, Regulation of G protein-coupled receptor

signaling by plasma membrane organization and endocytosis, Traffic 20

(2019) 121e129, https://doi.org/10.1111/tra.12628.

€ll, T. Koch, V. Ho

€llt, S. Schulz, Agonist-selective

[27] C. Doll, J. Konietzko, F. Po

patterns of m-opioid receptor phosphorylation revealed by phosphositespecific antibodies, Br. J. Pharmacol. 164 (2011) 298e307, https://doi.org/

10.1111/j.1476-5381.2011.01382.x.

[28] S. Just, S. Illing, M. Trester-Zedlitz, E.K. Lau, S.J. Kotowski, E. Miess, A. Mann,

C. Doll, J.C. Trinidad, A.L. Burlingame, M. von Zastrow, S. Schulz, Differentiation of opioid drug effects by hierarchical multi-site phosphorylation, Mol.

Pharmacol. 83 (2013) 633e639, https://doi.org/10.1124/mol.112.082875.

[29] E. Miess, A.B. Gondin, A. Yousuf, R. Steinborn, N. Mosslein, Y. Yang, M. Goldner,

J.G. Ruland, M. Bunemann, C. Krasel, M.J. Christie, M.L. Halls, S. Schulz,

M. Canals, Multisite phosphorylation is required for sustained interaction

with GRKs and arrestins during rapid mu-opioid receptor desensitization, Sci.

Signal. 11 (2018), https://doi.org/10.1126/scisignal.aas9609.

[30] M. Lemos Duarte, L.A. Devi, Post-translational modifications of opioid receptors, Trends Neurosci. 43 (2020) 417e432, https://doi.org/10.1016/

j.tins.2020.03.011.

[31] O.B. Goodman, J.G. Krupnick, F. Santini, V.V. Gurevich, R.B. Penn, A.W. Gagnon,

J.H. Keen, J.L. Benovic, Beta-arrestin acts as a clathrin adaptor in endocytosis of

the beta2-adrenergic receptor, Nature 383 (1996) 447e450, https://doi.org/

10.1038/383447a0.

[32] S.A. Laporte, R.H. Oakley, J.A. Holt, L.S. Barak, M.G. Caron, The interaction of

beta-arrestin with the AP-2 adaptor is required for the clustering of beta 2adrenergic receptor into clathrin-coated pits, J. Biol. Chem. 275 (2000)

23120e23126, https://doi.org/10.1074/jbc.M002581200.

[33] M. von Zastrow, A. Sorkin, Mechanisms for regulating and organizing receptor

signaling by endocytosis, Annu. Rev. Biochem. (2021), https://doi.org/

10.1146/annurev-biochem-081820-092427.

[34] G.M. Beacham, E.A. Partlow, G. Hollopeter, Conformational regulation of AP1

and AP2 clathrin adaptor complexes, Traffic 20 (2019) 741e751, https://

doi.org/10.1111/tra.12677.

[35] A. Beautrait, J.S. Paradis, B. Zimmerman, J. Giubilaro, L. Nikolajev, S. Armando,

H. Kobayashi, L. Yamani, Y. Namkung, F.M. Heydenreich, E. Khoury, M. Audet,

P.P. Roux, D.B. Veprintsev, S.A. Laporte, M. Bouvier, A new inhibitor of the barrestin/AP2 endocytic complex reveals interplay between GPCR internalization and signalling, Nat. Commun. 8 (2017), 15054, https://doi.org/10.1038/

ncomms15054.

[36] O.B. Goodman, J.G. Krupnick, V.V. Gurevich, J.L. Benovic, J.H. Keen, Arrestin/

clathrin interaction. Localization of the arrestin binding locus to the clathrin

terminal domain, J. Biol. Chem. 272 (1997) 15017e15022, https://doi.org/

10.1074/jbc.272.23.15017.

[37] L. von Kleist, W. Stahlschmidt, H. Bulut, K. Gromova, D. Puchkov,

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

72

M.J. Robertson, K.A. MacGregor, N. Tomilin, N. Tomlin, A. Pechstein, N. Chau,

M. Chircop, J. Sakoff, J.P. von Kries, W. Saenger, H.G. Kr€

ausslich, O. Shupliakov,

P.J. Robinson, A. McCluskey, V. Haucke, Role of the clathrin terminal domain in

regulating coated pit dynamics revealed by small molecule inhibition, Cell 146

(2011) 471e484, https://doi.org/10.1016/j.cell.2011.06.025.

, M. von Zastrow, b-Arrestin drives MAP kinase signalling

K. Eichel, D. Jullie

from clathrin-coated structures after GPCR dissociation, Nat. Cell Biol. 18

(2016) 303e310, https://doi.org/10.1038/ncb3307.

K. Eichel, D. Jullie, B. Barsi-Rhyne, N.R. Latorraca, M. Masureel, J.B. Sibarita,

R.O. Dror, M. von Zastrow, Catalytic activation of beta-arrestin by GPCRs,

Nature 557 (2018) 381e386, https://doi.org/10.1038/s41586-018-0079-1.

N.R. Latorraca, J.K. Wang, B. Bauer, R.J.L. Townshend, S.A. Hollingsworth,

J.E. Olivieri, H.E. Xu, M.E. Sommer, R.O. Dror, Molecular mechanism of GPCRmediated arrestin activation, Nature 557 (2018) 452e456, https://doi.org/

10.1038/s41586-018-0077-3.

M. Grundmann, N. Merten, D. Malfacini, A. Inoue, P. Preis, K. Simon,

N. Rüttiger, N. Ziegler, T. Benkel, N.K. Schmitt, S. Ishida, I. Müller, R. Reher,

€nig, C. Hoffmann,

K. Kawakami, U. Rick, T. Kühl, D. Imhof, J. Aoki, G.M. Ko

J. Gomeza, J. Wess, E. Kostenis, Lack of beta-arrestin signaling in the absence of

active G proteins, Nat. Commun. 9 (2018) 341, https://doi.org/10.1038/

s41467-017-02661-3.

L.M. Luttrell, J. Wang, B. Plouffe, J.S. Smith, L. Yamani, S. Kaur, P.Y. JeanCharles, C. Gauthier, M.H. Lee, B. Pani, J. Kim, S. Ahn, S. Rajagopal, E. Reiter,

M. Bouvier, S.K. Shenoy, S.A. Laporte, H.A. Rockman, R.J. Lefkowitz, Manifold

roles of b-arrestins in GPCR signaling elucidated with siRNA and CRISPR/Cas9,

Sci. Signal. 11 (2018), https://doi.org/10.1126/scisignal.aat7650.

D.S. Kang, R.C. Kern, M.A. Puthenveedu, M. von Zastrow, J.C. Williams,

J.L. Benovic, Structure of an arrestin2-clathrin complex reveals a novel clathrin

binding domain that modulates receptor trafficking, J. Biol. Chem. 284 (2009)

29860e29872, https://doi.org/10.1074/jbc.M109.023366.

Y. Zhuo, S.A. Vishnivetskiy, X. Zhan, V.V. Gurevich, C.S. Klug, Identification of

receptor binding-induced conformational changes in non-visual arrestins,

J. Biol. Chem. 289 (2014) 20991e21002, https://doi.org/10.1074/

jbc.M114.560680.

A. Sente, R. Peer, A. Srivastava, M. Baidya, A.M. Lesk, S. Balaji, A.K. Shukla,

M.M. Babu, T. Flock, Molecular mechanism of modulating arrestin conformation by GPCR phosphorylation, Nat. Struct. Mol. Biol. 25 (2018) 538e545,

https://doi.org/10.1038/s41594-018-0071-3.

H. Zheng, H.H. Loh, P.Y. Law, Beta-arrestin-dependent mu-opioid receptoractivated extracellular signal-regulated kinases (ERKs) Translocate to Nucleus

in Contrast to G protein-dependent ERK activation, Mol. Pharmacol. 73 (2008)

178e190, https://doi.org/10.1124/mol.107.039842.

N.J. Pavlos, P.A. Friedman, GPCR signaling and trafficking: the long and short

of it, Trends Endocrinol. Metabol. 28 (2017) 213e226, https://doi.org/

10.1016/j.tem.2016.10.007.

P.G. Zaworski, G.L. Alberts, J.F. Pregenzer, W.B. Im, J.L. Slightom, G.S. Gill,

Efficient functional coupling of the human D3 dopamine receptor to G(o)

subtype of G proteins in SH-SY5Y cells, Br. J. Pharmacol. 128 (1999)

1181e1188, https://doi.org/10.1038/sj.bjp.0702905.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る