リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Identification of the monolayer thickness difference in a mechanically exfoliated thick flake of hexagonal boron nitride and graphite for van der Waals heterostructures」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Identification of the monolayer thickness difference in a mechanically exfoliated thick flake of hexagonal boron nitride and graphite for van der Waals heterostructures

Hattori, Yoshiaki Taniguchi, Takashi Watanabe, Kenji Kitamura, Masatoshi 神戸大学

2023.07.16

概要

Exfoliated flakes of layered materials, such as hexagonal boron nitride (hBN) and graphite with a thickness of several tens of nanometers, are used to construct van der Waals heterostructures. A flake with a desirable thickness, size, and shape is often selected from many exfoliated flakes placed randomly on a substrate using an optical microscope. This study examined the visualization of thick hBN and graphite flakes on SiO₂/Si substrates through calculations and experiments. In particular, the study analyzed areas with different atomic layer thicknesses in a flake. For visualization, the SiO₂ thickness was optimized based on the calculation. As an experimental result, the area with different thicknesses in a hBN flake showed different brightness in the image obtained using an optical microscope with a narrow band-pass filter. The maximum contrast was 12% with respect to the difference of monolayer thickness. In addition, hBN and graphite flakes were observed by differential interference contrast (DIC) microscopy. In the observation, the area with different thicknesses exhibited different brightnesses and colors. Adjusting the DIC bias had a similar effect to selecting a wavelength using a narrow band-pass filter.

この論文で使われている画像

参考文献

[1] Yao J D and Yang G W 2021 All-2D architectures toward

advanced electronic and optoelectronic devices Nano Today

36 101026

[2] Wang L, Huang L, Tan W C, Feng X, Chen L, Huang X and

Ang K-W 2018 2D photovoltaic devices: progress and

prospects Small Methods 2 1700294

[3] Zhou Y, Xu W, Sheng Y, Huang H, Zhang Q, Hou L,

Shautsova V and Warner J H 2019 Symmetry-controlled

reversible photovoltaic current flow in ultrathin All 2D

vertically stacked graphene/MoS2/WS2/graphene devices

ACS Appl. Mater. Interfaces 11 2234–42

[4] Balaji Y, Smets Q, Śzabo Á, Mascaro M, Lin D, Asselberghs I,

Radu I, Luisier M and Groeseneken G 2020 MoS2/MoTe2

Heterostructure Tunnel FETs Using Gated Schottky

Contacts Adv. Funct. Mater. 30 1905970

[5] Lee K-C et al 2019 Analog circuit applications based on All2D ambipolar ReSe2 field-effect transistors Adv. Funct.

Mater. 29 1809011

[6] Chuang H-J, Chamlagain B, Koehler M, Perera M M, Yan J,

Mandrus D, Tománek D and Zhou Z 2016 Low-resistance

2D/2D ohmic contacts: a universal approach to highperformance WSe2, MoS2, and MoSe2 transistors Nano Lett.

16 1896–902

[7] Mukherjee B, Zulkefli A, Watanabe K, Taniguchi T,

Wakayama Y and Nakaharai S 2020 Laser-assisted

multilevel non-volatile memory device based on 2D vander-Waals few-layer-ReS2/h-BN/graphene heterostructures

Adv. Funct. Mater. 30 2001688

[8] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y,

Dubonos S V, Grigorieva I V and Firsov A A 2004 Electric

field effect in atomically thin carbon films Science 306

666–9

[9] Blake P, Hill E W, Castro Neto A H, Novoselov K S, Jiang D,

Yang R, Booth T J and Geim A K 2007 Making graphene

visible Appl. Phys. Lett. 91 063124

[10] Gorbachev R V et al 2011 Hunting for monolayer boron

nitride: optical and raman signatures Small 7 465–8

[11] Donnelly G E, Velický M, Hendren W R, Bowman R M and

Huang F 2020 Achieving extremely high optical contrast of

atomically-thin MoS2 Nanotechnology 31 145706

[12] Hattori Y, Taniguchi T, Watanabe K and Kitamura M 2021

Visualization of a hexagonal boron nitride monolayer on an

ultra-thin gold film via reflected light microscopy

Nanotechnology 33 065702

[13] Casiraghi C, Hartschuh A, Lidorikis E, Qian H,

Harutyunyan H, Gokus T, Novoselov K S and Ferrari A C

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

10

2007 Rayleigh imaging of graphene and graphene layers

Nano Lett. 7 2711–7

Huang F 2019 Optical contrast of atomically thin films J. Phys.

Chem. C 123 7440–6

Hattori Y, Taniguchi T, Watanabe K and Kitamura M 2022

Enhancement of the contrast for a hexagonal boron nitride

monolayer placed on a silicon nitride/silicon substrate Appl.

Phys. Express 15 086502

Syahir A, Mihara H and Kajikawa K 2010 A new optical labelfree biosensing platform based on a metal−insulator−metal

structure Langmuir 26 6053–7

Hattori Y, Takahashi H, Ikematsu N and Kitamura M 2021

Chain-length dependence of optical properties for an

alkanethiol monolayer on an ultrathin gold film revealed

via reflected light microscopy J. Phys. Chem. C

125 14991–9

Hattori Y and Kitamura M 2023 Reflected light microscopy of

a gold oxide layer formed on a Au film by ultraviolet/ozone

treatment Thin Solid Films 764 139631

Rubio-Bollinger G, Guerrero R, De Lara D P, Quereda J,

Vaquero-Garzon L, Agraït N, Bratschitsch R and

Castellanos-Gomez A 2015 Enhanced visibility of MoS2,

MoSe2, WSe2 and black-phosphorus: making optical

identification of 2D semiconductors easier Electronics 4

847–56

An J Y and Kahng Y H 2018 Optical observation of single

layer graphene on silicon nitride substrate AIP Adv. 8

015107

Wang L et al 2013 One-dimensional electrical contact to a twodimensional material Science 342 614–7

Bresnehan M S, Hollander M J, Wetherington M, LaBella M,

Trumbull K A, Cavalero R, Snyder D W and Robinson J A

2012 Integration of hexagonal boron nitride with quasifreestanding epitaxial graphene: toward wafer-scale, highperformance devices ACS Nano 6 5234–41

Tang J et al 2020 Vertical integration of 2D building blocks for

All-2D electronics Adv. Electron. Mater. 6 2000550

Wu L et al 2020 InSe/hBN/graphite heterostructure for highperformance 2D electronics and flexible electronics Nano

Res. 13 1127–32

Lembke D, Bertolazzi S and Kis A 2015 Single-layer MoS2

electronics Acc. Chem. Res. 48 100–10

Albarakati S et al 2019 Antisymmetric magnetoresistance in

van der Waals Fe3GeTe2/graphite/Fe3GeTe2 trilayer

heterostructures Sci. Adv. 5 eaaw0409

Watanabe K, Taniguchi T and Kanda H 2004 Direct-bandgap

properties and evidence for ultraviolet lasing of hexagonal

boron nitride single crystal Nature Mater 3 404–9

Katzen J M, Velický M, Huang Y, Drakeley S, Hendren W,

Bowman R M, Cai Q, Chen Y, Li L H and Huang F 2018

Rigorous and accurate contrast spectroscopy for ultimate

thickness determination of micrometer-sized graphene on

gold and molecular sensing ACS Appl. Mater. Interfaces 10

22520–8

Li X-L, Qiao X-F, Han W-P, Zhang X, Tan Q-H, Chen T and

Tan P-H 2016 Determining layer number of twodimensional flakes of transition-metal dichalcogenides by

the Raman intensity from substrates Nanotechnology 27

145704

Lu Y, Li X-L, Zhang X, Wu J-B and Tan P-H 2015 Optical

contrast determination of the thickness of SiO2 film on Si

substrate partially covered by two-dimensional crystal flakes

Sci. Bull. 60 806–11

Ohba N, Miwa K, Nagasako N and Fukumoto A 2001 Firstprinciples study on structural, dielectric, and dynamical

properties for three BN polytypes Phys. Rev. B 63 115207

Sørensen B E 2013 A revised Michel-Lévy interference colour

chart based on first-principles calculations Eur. J. Mineral.

25 5–10

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る