リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A new tropical cyclone surge index incorporating the effects of coastal geometry, bathymetry and storm information」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A new tropical cyclone surge index incorporating the effects of coastal geometry, bathymetry and storm information

Islam Md. Rezuanul 高木 泰士 Md. Rezuanul Islam Hiroshi Takagi 東京工業大学 DOI:https://doi.org/10.1038/s41598-021-95825-7

2021.08.18

概要

This study presents a new storm surge hazard potential index (SSHPI) for estimating tropical cyclone (TC) induced peak surge levels at a coast. The SSHPI incorporates parameters that are often readily available at real‑time: intensity in 10‑min maximum wind speed, radius of 50‑kt wind, translation speed, coastal geometry, and bathymetry information. The inclusion of translation speed and coastal geometry information lead to improvements of the SSHPI to other existing surge indices. A retrospective analysis of SSHPI using data from 1978–2019 in Japan suggests that this index captures historical events reasonably well. In particular, it explains ~ 66% of the observed variance and ~ 74% for those induced by TCs whose landfall intensity was larger than 79‑kt. The performance of SSHPI is not sensitive to the type of coastal geometry (open coasts or semi‑enclosed bays). Such a prediction methodology can decrease numerical computation requirements, improve public awareness of surge hazards, and may also be useful for communicating surge risk.

この論文で使われている画像

参考文献

1. Nicholls, R. J. An Expert Assessment of Storm Surge “Hotspots”. (2003).

2. Knutson, T. et al. Tropical cyclones and climate change assessment part II: Projected response to anthropogenic warming. Bull. Am. Meteorol. Soc. 101, E303–E322 (2020).

3. Neumann, B., Vafeidis, A. T., Zimmermann, J. & Nicholls, R. J. Future coastal population growth and exposure to sea-level rise and coastal flooding - A global assessment. PLoS ONE 10, e0118571 (2015).

4. National Climate Data Center. Billion‐Dollar Weather/Climate Disasters: Table of Events, Ashville, North Carolina, Supported By the National Oceanic and Atmospheric Administration. https://www.ncdc.noaa.gov/billions/events (2014).

5. Lagmay, A. M. F. et al. Devastating storm surges of Typhoon Haiyan. Int. J. Disaster Risk Reduct. 11, 1–12 (2015).

6. Demuth, J. L., Morss, R. E., Morrow, B. H. & Lazo, J. K. Creation and communication of hurricane risk information. Bull. Am. Meteorol. Soc. 93, 1133–1145 (2012).

7. Islam, M. R., Takagi, H., Anh, L. T., Takahashi, A. & Bowei, K. 2017 Typhoon Lan reconnaissance field survey in coasts of Kanto region, Japan. J. Jpn. Soc. Civil Eng Ser.B3 (Ocean Engineering) 74, 593–598 (2018).

8. Takagi, H. et al. Investigation of high wave damage caused by 2019 Typhoon Faxai in Kanto region and wave hindcast in Tokyo Bay. J. Jpn. Soc. Civil Eng Ser.B3 (Ocean Engineering) 76, 12–21 (2020).

9. Lazo, J. K., Waldman, D. M., Morrow, B. H. & Thacher, J. A. Household evacuation decision making and the benefits of improved hurricane forecasting: Developing a framework for assessment. Weather Forecast. 25, 207–219 (2010).

10. JMA. Japan Meteorological Agency | Forecast terms term related to typhoons. http://www.jma.go.jp/jma/kishou/know/yougo_hp/haichi2.html (2021).

11. Bangladesh Meteorological Department. Bangladesh Meteorological Department. http://live.bmd.gov.bd/ (2021).

12. Bureau of Meteorology. Australia’s official weather forecasts & weather radar—Bureau of Meteorology. http://www.bom.gov.au/? ref=logo (2021).

13. National Hurricane Center. The Saffir-Simpson Hurricane Wind Scale. https://www.nhc.noaa.gov/pdf/sshws.pdf (2019).

14. Powell, M. D. & Reinhold, T. A. Tropical cyclone destructive potential by integrated kinetic energy. Bull. Am. Meteorol. Soc. 88, 513–526 (2007).

15. Irish, J. L., Resio, D. T. & Ratcliff, J. J. The influence of storm size on hurricane surge. J. Phys. Oceanogr. 38, 2003–2013 (2008).

16. Needham, H. & Keim, B. D. Storm surge: Physical processes and an impact scale. Recent Hurricane Res. Clim. Dyn. Soc. Impacts. https://doi.org/10.5772/15925 (2011).

17. Morrow, B. H., Lazo, J. K., Rhome, J. & Feyen, J. Improving storm surge risk communication: Stakeholder perspectives. Bull. Am. Meteorol. Soc. 96, 35–48 (2015).

18. Khan, M. J. U. et al. Towards an efficient storm surge and inundation forecasting system over the Bengal delta: Chasing the super- cyclone Amphan. Nat. Hazards Earth Syst. Sci. Discuss. https://doi.org/10.5194/nhess-2020-340 (2020).

19. Weisberg, R. H. & Zheng, L. Hurricane storm surge simulations for Tampa Bay. Estuaries Coasts J. ERF 29, 899–913 (2006).

20. Sebastian, A. et al. Characterizing hurricane storm surge behavior in Galveston Bay using the SWAN+ADCIRC model. Coast. Eng. 88, 171–181 (2014).

21. Islam, M. R. & Takagi, H. Typhoon parameter sensitivity of storm surge in the semi-enclosed Tokyo Bay. Front. Earth Sci. 14, 553–567 (2020).

22. Jelesnianski, C. P. SPLASH (Special Program to List Amplitudes of Surges from Hurricanes): 1. Landfall Storms. (1972).

23. Rego, J. L. & Li, C. On the importance of the forward speed of hurricanes in storm surge forecasting: A numerical study. Geophys. Res. Lett. 36, 7 (2009).

24. Peng, M., Xie, L. & Pietrafesa, L. J. A numerical study of storm surge and inundation in the Croatan–Albemarle–Pamlico Estuary System. Estuar. Coast. Shelf Sci. 59, 121–137 (2004).

25. Islam, M. R. & Takagi, H. Statistical significance of tropical cyclone forward speed on storm surge generation: Retrospective analysis of best track and tidal data in Japan. Georisk https://doi.org/10.1080/17499518.2020.1756345 (2020).

26. Kossin, J. P. A global slowdown of tropical-cyclone translation speed. Nature 558, 104–107 (2018).

27. Yamaguchi, M. & Maeda, S. Slowdown of typhoon translation speeds in mid-latitudes in September influenced by the pacific decadal oscillation and global warming. J. Meteorol. Soc. Jpn. Ser. II(98), 1321–1334 (2020).

28. van Ormondt, M., van Dongeren, A. & Roelvink, D. A semi-empirical method for computing storm surges on open coasts during tropical cyclones. Coastal Eng. 165, 103839 (2021).

29. Klotzbach, P. J. et al. Surface pressure a more skillful predictor of normalized hurricane damage than maximum sustained wind. Bull. Am. Meteorol. Soc. 101, E830–E846 (2020).

30. Simpson, R. H. The Hurricane disaster—Potential scale. Weatherwise 27, 169–186 (1974).

31. Saffir, H. S. Hurricane wind and storm surge. Military Eng. 65, 4–5 (1973).

32. Kantha, L. Time to replace the Saffir-Simpson hurricane scale?. EOS Trans. Am. Geophys. Union 87, 3–6 (2006).

33. Kantha, L. Comments on "Tropical cyclone destructive potential by integrated kinetic energy. Bull. Am. Meteorol. Soc. 89, 219–221 (2008).

34. Irish, J. L. & Resio, D. T. A hydrodynamics-based surge scale for hurricanes. Ocean Eng. 37, 69–81 (2010).

35. Rezapour, M. & Baldock, T. E. Classification of Hurricane hazards: The importance of rainfall. Weather Forecast. 29, 1319–1331 (2014).

36. Walker, A. M., Titley, D. W., Mann, M. E., Najjar, R. G. & Miller, S. K. A fiscally based scale for tropical cyclone storm surge. Weather Forecast. 33, 1709–1723 (2018).

37. Chavas, D., Yonekura, E., Karamperidou, C., Cavanaugh, N. & Serafin, K. U. S. Hurricanes and economic damage: Extreme value perspective. Nat. Hazard. Rev. 14, 237–246 (2013).

38. Kantha, L. Discussion of “a hydrodynamics-based surge scale for hurricanes”. Ocean Eng. 37, 1081–1084 (2010).

39. Hebert, C. G., Weinzapfel, R. A. & Chambers, M. A. Hurricane Severity Index: A New Way of Estimating a Tropical Cyclone’s Destructive Potential (American Meteorological Society, 2008).

40. Takagi, H. & Wu, W. Maximum wind radius estimated by the 50 kt radius: improvement of storm surge forecasting over the western North Pacific. Nat. Hazard. 16, 705–717 (2016).

41. Islam, M. R. & Takagi, H. On the importance of typhoon size in storm surge forecasting. in Water, Flood Management and Water Security Under a Changing Climate 153–162 (Springer, 2020). https://doi.org/10.1007/978-3-030-47786-8_10.

42. JMA. JMA Best Track Archive. https://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/trackarchives.html (2020).

43. Mastenbroek, C., Burgers, G. & Janssen, P. A. E. M. The dynamical coupling of a wave model and a storm surge model through the atmospheric boundary layer. J. Phys. Oceanogr. 23, 1856–1866 (1993).

44. Thomas, A. et al. Influence of storm timing and forward speed on tides and storm surge during Hurricane Matthew. Ocean Model 137, 1–19 (2019).

45. Proudman, J. Dynamical Oceanography. (Wiley, 1953).

46. Higaki, M., Hayashibara, H., Nozaki, F. & Masakazu, H.F.N.H.H. Outline of the Storm Surge Prediction Model at the Japan Mete- orological Agency. 25. (Japan Meteorological Agency, 2009).

47. JMA. Japan Meteorological Agency|Outline NWP 2019. https://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2019-nwp/ index.htm (2019).

48. World Meteorological Organization. Guide to Storm Surge Forecasting. (World Meteorological Organization, 2011).

49. Chan, K. T. F. Are global tropical cyclones moving slower in a warming climate?. Environ. Res. Lett. 14, 104015 (2019).

50. Moon, I. J., Kim, S. H. & Chan, J. C. L. Climate Change and Tropical Cyclone Trend. Nature Vol. 570 (Nature Publishing Group, 2019).

51. JODC. JODC. https://www.jodc.go.jp/jodcweb/JDOSS/infoJEGG.html (2020).

52. JMA. http://www.data.jma.go.jp/kaiyou/db/tide/genbo/index.php (2020).

53. JMA. Japan Meteorological Agency, Predicted Tide Stations. http://www.data.jma.go.jp/kaiyou/db/tide/suisan/index.php (2020).

54. Mandli, K. T. & Dawson, C. N. Adaptive mesh refinement for storm surge. Ocean Model 75, 36–50 (2014).

55. Marsooli, R. & Lin, N. Numerical modeling of historical storm tides and waves and their interactions along the U.S. East and Gulf Coasts. J. Geophys. Res. Oceans 123, 3844–3874 (2018).

56. National Oceanic and Atmospheric Administration. Relationship of Maximum Sustained Winds to Minimum Sea Level Pressure in Central North Pacific Tropical Cyclones. https://repository.library.noaa.gov/view/noaa/7039/ (1982).

57. Knaff, J. A. & Zehr, R. M. Reexamination of tropical cyclone wind-pressure relationships. Weather Forecast. 22, 71–88 (2007).

58. Kossin, J. P. Hurricane wind-pressure relationship and eyewall replacement cycles. Weather Forecast. 30, 177–181 (2015).

59. Jolliffe, I. T. & Stephenson, D. B. Forecast Verification: A Practitioner’s Guide in Atmospheric Science (Wiley, 2003).

60. Batstone, C. et al. A UK best-practice approach for extreme sea-level analysis along complex topographic coastlines. Ocean Eng. 71, 28–39 (2013).

61. Maskell, J., Horsburgh, K., Lewis, M. & Bates, P. Investigating river-surge interaction in idealised estuaries. J. Coastal Res. 30, 248–259 (2013).

62. Lyddon, C., Brown, J. M., Leonardi, N. & Plater, A. J. Uncertainty in estuarine extreme water level predictions due to surge-tide interaction. PLoS ONE 13, e0206200 (2018).

63. Mori, N. et al. Local amplification of storm surge by Super Typhoon Haiyan in Leyte Gulf. Geophys. Res. Lett. 41, 5106–5113 (2014).

64. Le, T. A., Takagi, H., Heidarzadeh, M., Takata, Y. & Takahashi, A. Field surveys and numerical simulation of the 2018 Typhoon Jebi: Impact of high waves and storm surge in semi-enclosed Osaka Bay, Japan. Pure Appl. Geophys. 176, 4139–4160 (2019).

65. Yamanaka, Y. et al. Nearshore dynamics of storm surges and waves induced by the 2018 Typhoons Jebi and Trami based on the analysis of video footage recorded on the coasts of Wakayama, Japan. J. Mar. Sci. Eng. 7, 413 (2019).

66. Tanaka, K., Washida, M., Nishiuke, Y. & Hiraishi, T. Numerical simulation of storm surges and waves caused by Typhoon Jebi in Osaka Bay with consideration of sudden change of wind field. J. Nat. Dis. Sci. 40, 44–68 (2020).

67. Landsea, C. W. & Franklin, J. L. Atlantic Hurricane database uncertainty and presentation of a new database format. Mon. Weather Rev. 141, 3576–3592 (2013).

68. NHC. NHC Data Archive. https://www.nhc.noaa.gov/data/ (2021).

69. NOAA. Inundation Dashboard - NOAA Tides & Currents. https://tidesandcurrents.noaa.gov/inundationdb/# (2021).

70. Needham, H. F. & Keim, B. D. A storm surge database for the US Gulf Coast. Int. J. Climatol. 32, 2108–2123 (2012).

71. NHC. Hurricane KATRINA Advisory Archive. https://www.nhc.noaa.gov/archive/2005/KATRINA.shtml? (2021).

参考文献をもっと見る