リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Thermal treatment of W large-scale fiberform nanostructures」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Thermal treatment of W large-scale fiberform nanostructures

Kajita, Shin Okuyama, Tatsuki Tanaka, Hirohiko Kuwabara, Tatsuya Ohno, Noriyasu Yoshida, Naoaki 名古屋大学

2021.09

概要

Tungsten (W) is a leading candidate material for plasma facing components in fusion devices because of its low sputtering yield and low tritium inventory. However, it has been recognized that the thermal and physical properties are significantly altered by the exposure to helium (He) plasmas, especially when fiberform nanostructures called fuzz are grown on the surface [1–5]. Concerning the fuzz growth, an acceleration in the growth rate has been recently identified with additional W deposition, and mm-thick large scale fiberform nanostructures (LFNs) are grown on the surface when a certain set of conditions is satisfied [6]. The acceleration in the growth rate has been identified in a magnetron sputtering device [7] in addition to linear plasma devices (NAGDIS-II [6] and Magnum-PSI [8]).

To answer the question whether fuzz is grown in fusion relevant conditions, it is important to discuss the counter- growth effects such as sputtering [9–11] and annealing [12–15] in addition to growth process [16]. Concerning the conventional fuzz growth, De Temmerman et al have considered those effects and showed that ∼1-µm-thick fuzz can be grown under fusion relevant condition, and that the energy of edge localized modes (ELMs) [17] is a key parameter for the fuzz growth [18]. However, thermal response of thick fuzzy layer formed with deposition including LFNs has yet to be fully understood. In this study, we perform thermal treatment and investigate morphology changes, annealing rate, and He desorption behavior of thick W fuzzy layer including LFNs formed under deposition conditions.

参考文献

[1] M. Baldwin and R. Doerner: Nucl. Fusion 48 (2008) 035001 (5pp).

[2] S. Kajita, W. Sakaguchi, N. Ohno, N. Yoshida and T. Saeki: Nucl. Fusion 49 (2009) 095005.

[3] G. De Temmerman, K. Bystrov, J. J. Zielinski, M. Balden, G. Matern, C. Arnas and L. Marot: Journal of Vacuum Science & Technology A 30 (2012) 041306.

[4] K. D. Hammond: Materials Research Express 4 (2017) 104002.

[5] F. W. Meyer: Journal of Physics B: Atomic, Molecular and Optical Physics 52 (2019) 012001.

[6] S. Kajita, S. Kawaguchi, N. Ohno and N. Yoshida: Sci. Rep. 8 (2018) 56.

[7] P. McCarthy, D. Hwangbo, M. Bilton, S. Kajita and J. W. Bradley: Nuclear Fusion 60 (2020) 026012.

[8] S. Kajita, T. Morgan, H. Tanaka, Y. Hayashi, N. Yoshida, D. Nagata, J. Vernimmen, S. Feng, R. Zhang and N. Ohno: Journal of Nuclear Materials 548 (2021) 152844.

[9] D. Nishijima, M. Baldwin, R. Doerner and J. Yu: Journal of Nuclear Materials 415 (2011) S96.

[10] R. Doerner, M. Baldwin and P. Stangeby: Nucl. Fusion 51 (2011) 043001.

[11] Y. Noiri, S. Kajita and N. Ohno: Journal of Nuclear Materials 463 (2015) 285.

[12] M. Baldwin and R. Doerner: Journal of Nuclear Materials 404 (2010) 165.

[13] S. Takamura and T. Miyamoto: Plasma and Fusion Research 6 (2011) 1202005.

[14] S. Kajita, N. Ohno, M. Yajima and J. Kato: Journal of Nuclear Materials 440 (2013) 55.

[15] G. Wright, G. van Eden, L. Kesler, G. D. Temmerman, D. Whyte and K. Woller: Journal of Nuclear Materials 463 (2015) 294.

[16] T. Petty, M. Baldwin, M. Hasan, R. Doerner and J. Bradley: Nuclear Fusion 55 (2015) 093033.

[17] A. W. Leonard: Physics of Plasmas 21 (2014) 090501.

[18] G. D. Temmerman, R. Doerner and R. Pitts: Nuclear Materials and Energy 19 (2019) 255 .

[19] C.-S. Wong, J. A. Whaley, T. Wada, S. Harayama, Y. Oya and R. D. Kolasinski: Nuclear Materials and Energy 22 (2020) 100730.

[20] T. Okuyama, S. Kajita, N. Yoshida, H. Tanaka, T. Kuwabara and N. Ohno: Plasma and Fusion Research 16 (2021) 1206001.

[21] S. Kajita, N. Yoshida, R. Yoshihara, N. Ohno and M. Yamagiwa: Journal of Nuclear Materials 418 (2011) 152.

[22] S. Kajita, T. Nojima, T. Okuyama, Y. Yamamoto, N. Yoshida and N. Ohno: Acta Materialia 181 (2019) 342.

[23] M. Yajima, N. Yoshida, S. Kajita, M. Tokitani, T. Baba and N. Ohno: Journal of Nuclear Materials 449 (2014) 9.

[24] Y. Gasparyan, V. Efimov and K. Bystrov: Nuclear Fusion 56 (2016) 054002.

[25] K. Woller, D. Whyte and G. Wright: Journal of Nuclear Materials 463 (2015) 289.

[26] R. Doerner, M. Baldwin, M. Simmonds, J. Yu, L. Buzi and T. Schwarz-Selinger: Nuclear Materials and Energy 12 (2017) 372.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る