リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「クロマチンリモデラーによるセントロメアクロマチン境界の制御機構」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

クロマチンリモデラーによるセントロメアクロマチン境界の制御機構

常峰, 悟 京都大学 DOI:10.14989/doctor.r13550

2023.03.23

概要

セントロメアは染色体を正確に分配するうえで最も重要な染色体機能ドメインである。分
裂酵母のセントロメアは、中心となる配列 cnt と、これを挟むように位置する逆向き配列であ
る imr、およびその外側に位置する反復配列 otr から構成されている。cnt、imr からなる内側
領域には、ヒストン H3 のセントロメア特異的なバリアントの CENP-A(分裂酵母ホモログ
Cnp1)で規定される CENP-ACnp1 クロマチンが形成される。一方、otr からなる外側領域には、
ヒストン H3 の 9 番目のリジンのメチル化(H3K9me)とそれを認識して結合するヘテロクロ
マチンタンパク質 1(HP1)で規定されるヘテロクロマチンが形成される。この異なるクロマ
チン構造の境界は、imr 内に存在する tRNA 遺伝子のクラスター近傍に位置することが知られ
ていたが、その形成メカニズムは不明のままであった。
クロマチンリモデラーは、
ヌクレオソームを形成する、解体する、動かすなどの機能を持ち、
クロマチン関連の多くのプロセスで重要な役割を果たしている。本研究では、クロマチンリモ
デラーの 1 つ RSC(Remodeling the Structure of Chromatin)のサブユニットである sfh1 遺
伝子の変異体の機能解析により、この変異体では CENP-ACnp1 が近接するヘテロクロマチン領
域に異所的に局在するようになった結果、染色体の安定性が低下することを明らかにした。
CENP-ACnp1 の異所的局在は、他のヘテロクロマチン領域では起こらないので、CENP-ACnp1 は
セントロメアの中央領域からペリセントロメア領域へ拡張すること、RSC がこの拡張に対す
るバリアとして機能することが推測された。更なる解析の結果、RSC は境界領域において
CENP-ACnp1 の異所的局在を抑えることでヌクレオソーム欠失領域(NDR, NucleosomeDepleted Region)の形成を誘導することを明らかにした。加えて、ヒストンの交換反応が活
発に起こる転写活性遺伝子を sfh1 変異株の境界に挿入することで、異所的 CENP-ACnp1 の局
在が解消すること、染色体の安定性が回復することを明らかにした。この結果から、RSC は
CENP-ACnp1 クロマチンとヘテロクロマチンの境界領域において CENP-ACnp1 を排除して NDR
の形成を誘導することで、ペリセントロメア領域における CENP-ACnp1 の異所的形成を阻止し
ていることが示された。
境界領域の NDR が、CENP-ACnp1 クロマチンとヘテロクロマチンとを分離するバリアとし
て機能していることはこれまでの研究で示唆されていたが、その形成に関わる因子は報告さ
れておらず、不明な点が多くあった。本研究により、RSC が CENP-ACnp1 のペリセントロメ
ア領域への拡張を防ぐ因子であることが初めて明らかになった。この結果は、クロマチンリモ
デラーの機能、およびクロマチンドメインの分布やその大きさを制御するメカニズムへの理
解を深めることにつながる。 ...

この論文で使われている画像

参考文献

1.

Oudet, P. Gross-Bellard M. & Chambon P. Electron Microscopic and Biochemical that

Chromatin Structure Is a Repeating Unit. Cell 4, 281–300 (1975).

2.

Black, B. E. et al. Structural determinants for generating centromeric chromatin. Nature

430, 578–582 (2004).

3.

De Rop, V., Padeganeh, A. & Maddox, P. S. CENP-A: The key player behind

centromere identity, propagation, and kinetochore assembly. Chromosoma 121, 527–

538 (2012).

4.

Cheeseman, I. M. & Desai, A. Molecular architecture of the kinetochore-microtubule

interface. Nature Reviews Molecular Cell Biology 9, 33–46 (2008).

5.

Fernandez-Capetillo, O. & Nussenzweig, A. Aging counts on chromosomes. Nat. Genet.

36, 672–674 (2004).

6.

Holland, A. J. & Cleveland, D. W. Boveri revisited: Chromosomal instability, aneuploidy

and tumorigenesis. Nat. Rev. Mol. Cell Biol. 10, 478–487 (2009).

7.

Chen, C. C. & Mellone, B. G. Chromatin assembly: Journey to the CENter of the

chromosome. J. Cell Biol. 214, 13–24 (2016).

8.

Cairns, B. R. The logic of chromatin architecture and remodelling at promoters. Nature

461, 193–198 (2009).

9.

Hartley, P. D. & Madhani, H. D. Mechanisms that Specify Promoter Nucleosome

Location and Identity. Cell 137, 445–458 (2009).

10.

Parnell, T. J., Huff, J. T. & Cairns, B. R. RSC regulates nucleosome positioning at Pol II

genes and density at Pol III genes. EMBO J. 27, 100–110 (2008).

11.

Genet, C. et al. A conserved role of the RSC chromatin remodeler in the establishment

of nucleosome‑depleted regions. Curr. Genet. 63, 187–193 (2016).

12.

Hota, S. K. & Bruneau, B. G. ATP-dependent chromatin remodeling during mammalian

development. Development 143, 2882–2897 (2016).

13.

Cao, Y., Cairns, B. R., Kornberg, R. D. & Laurent, B. C. Sfh1p, a component of a novel

chromatin-remodeling complex, is required for cell cycle progression. Mol. Cell. Biol. 17,

3323–3334 (1997).

14.

Hsu, J.-M., Huang, J., Meluh, P. B. & Laurent, B. C. The yeast RSC chromatinremodeling complex is required for kinetochore function in chromosome segregation.

Mol. Cell. Biol. 23, 3202–3215 (2003).

15.

Huang, J. & Laurent, B. C. A role for the RSC chromatin remodeler in regulating

cohesion of sister chromatid arms. Cell Cycle 3, 971-973 (2004).

16.

Huang, J., Hsu, J. M. & Laurent, B. C. The RSC nucleosome-remodeling complex is

53

required for cohesin’s association with chromosome arms. Mol. Cell 13, 739–750 (2004).

17.

Muñoz, S., Minamino, M., Casas-Delucchi, C. S., Patel, H. & Uhlmann, F. A Role for

Chromatin Remodeling in Cohesin Loading onto Chromosomes. Mol. Cell 74, 664-673

(2019).

18.

Duan, M. R. & Smerdon, M. J. Histone H3 lysine 14 (H3K14) acetylation facilitates DNA

repair in a positioned nucleosome by stabilizing the binding of the chromatin remodeler

RSC (Remodels Structure of Chromatin). J. Biol. Chem. 289, 8353–8363 (2014).

19.

Shim, E. Y., Ma, J.-L., Oum, J.-H., Yanez, Y. & Lee, S. E. The Yeast Chromatin

Remodeler RSC Complex Facilitates End Joining Repair of DNA Double-Strand Breaks.

Mol. Cell. Biol. 25, 3934–3944 (2005).

20.

Kent, N. A., Chambers, A. L. & Downs, J. A. Dual chromatin remodeling roles for RSC

during DNA double strand break induction and repair at the yeast MAT locus. J. Biol.

Chem. 282, 27693–27701 (2007).

21.

Wagner, F. R. et al. Structure of SWI/SNF chromatin remodeller RSC bound to a

nucleosome. Nature 579, 448–451 (2020).

22.

Chen, Y. et al. Structure of the RSC complex bound to the nucleosome. Science 843,

838–843 (2019).

23.

Patel, A. B. et al. Architecture of the chromatin remodeler RSC and insights into its

nucleosome engagement. Elife 1–24 (2019).

24.

Baker, R. W. et al. Structural inshights into assembly and function of the RSC chromatin

remodeling complex. Nat. Struct. Mol. Biol. 28, (2021).

25.

Kubik, S. et al. Nucleosome Stability Distinguishes Two Different Promoter Types at All

Protein-Coding Genes in Yeast. Mol. Cell 60, 422–434 (2015).

26.

Brahma, S. & Henikoff, S. RSC-Associated Subnucleosomes Define MNase- Sensitive

Promoters in Yeast. Mol. Cell 73, 238-249 (2019).

27.

Perpelescu, M., Nozaki, N., Obuse, C., Yang, H. & Yoda, K. Active establishment of

centromeric cenp-a chromatin by rsf complex. J. Cell Biol. 185, 397–407 (2009).

28.

Lee, H. S. et al. The chromatin remodeler RSF1 controls centromeric histone

modifications to coordinate chromosome segregation. Nat. Commun. 9, 1–13 (2018).

29.

Okada, M., Okawa, K., Isobe, T. & Fukagawa, T. CENP-H – containing Complex

Facilitates Centromere Deposition of CENP-A in Cooperation with FACT and CHD1. 20,

3986–3995 (2009).

30.

Chambers, A. L. et al. The INO80 chromatin remodeling complex prevents polyploidy

and maintains normal chromatin structure at centromeres. Genes Dev. 26, 2590–2603

(2012).

31.

Walfridsson, J. et al. The CHD remodeling factor Hrp1 stimulates CENP-A loading to

54

centromeres. Nucleic Acids Res. 33, 2868–2879 (2005).

32.

Choi, E. S., Cheon, Y., Kang, K. & Lee, D. The Ino80 complex mediates epigenetic

centromere propagation via active removal of histone H3. Nat. Commun. 8, (2017).

33.

Singh, P. P. et al. Hap2-Ino80-facilitated transcription promotes de novo establishment

of CENP-A chromatin. Genes Dev. 34, 226–238 (2020).

34.

Ryan J. Bourgo, H. S. et al. SWI/SNF Deficiency Results in Aberrant Chromatin

Organization, Mitotic Failure, and Diminished Proliferative Capacity. Mol. Biol. Cell 20,

2673–2683 (2009).

35.

Creamer, K. M. et al. The Mi-2 homolog Mit1 actively positions nucleosomes within

heterochromatin to suppress transcription. Mol. Cell. Biol. 34, 2046–61 (2014).

36.

Kotomura, N. et al. Sfh1, an essential component of the RSC chromatin remodeling

complex, maintains genome integrity in fission yeast. Genes to Cells 23, 738–752

(2018).

37.

Gikopoulos, T. et al. The SWI / SNF complex acts to constrain distribution of the

centromeric histone variant Cse4 . EMBO J. 30, 1919–27 (2011).

38.

Mathew, V. et al. The Histone-Fold Protein CHRAC14 Influences Chromatin

Composition in Response to DNA Damage. Cell Rep. 7, 321–330 (2014).

39.

Sharma, A. B., Dimitrov, S., Hamiche, A. & Van Dyck, E. Centromeric and ectopic

assembly of CENP-A chromatin in health and cancer: old marks and new tracks. Nucleic

Acids Res. 47, 1051–1069 (2019).

40.

Funabiki, H., Hagan, I., Uzawa, S. & Yanagida, M. Cell cycle-dependent specific

positioning and clustering of centromeres and telomeres in fission yeast. J. Cell Biol.

121, 961–976 (1993).

41.

Yamada, K., Hirota, K., Mizuno, K.-I., Shibata, T. & Ohta, K. Essential roles of Snf21, a

Swi2/Snf2 family chromatin remodeler, in fission yeast mitosis. Genes Genet. Syst. 83,

361–372 (2008).

42.

Moreno, S., Klar, A. & Nurse, P. Molecular genetic analysis of fission yeast

Schizosaccharomyces pombe. Methods Enzymol. 194, 795–823 (1991).

43.

Bähler, J. et al. Heterologous modules for efficient and versatile PCR-based gene

targeting in Schizosaccharomyces pombe. Yeast 14, 943–951 (1998).

44.

Takayama, Y. et al. Biphasic incorporation of centromeric histone CENP-A in fission

yeast. Mol. Biol. Cell 19, 682–90 (2008).

45.

Nakagawa, H. et al. Fission yeast CENP-B homologs nucleate centromeric

heterochromatin by promoting heterochromatin-specific histone tail modifications. Genes

Dev. 16, 1766–1778 (2002).

46.

Kimura, H., Hayashi-Takanaka, Y., Goto, Y., Takizawa, N. & Nozaki, N. The organization

55

of histone H3 modifications as revealed by a panel of specific monoclonal antibodies.

Cell Struct. Funct. 33, 61–73 (2008).

47.

Dohke, K. et al. Fission yeast chromatin assembly factor 1 assists in the replicationcoupled maintenance of heterochromatin. Genes to Cells 13, 1027–1043 (2008).

48.

Kawakami, K., Hayashi, A., Nakayama, J. I. & Murakami, Y. A novel RNAi protein, Dsh1,

assembles RNAi machinery on chromatin to amplify heterochromatic siRNA. Genes Dev.

26, 1811–1824 (2012).

49.

Lantermann,A., Stråfors,A., Fagerström-Billai,F., Korbér,P. & Ekwall,K. Genome-wide

mapping of nucleosome positions in Schizosaccharomyces pombe. Methods 48, 218–

225 (2009).

50.

Kato, H. et al. Spt6 prevents transcription-coupled loss of posttranslationally modified

histone H3. Sci. Rep. 3, 2186 (2013).

51.

Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler

transform. Bioinformatics 25, 1754–1760 (2009).

52.

Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25,

2078–2079 (2009).

53.

Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol 9, R137

(2008).

54.

Thorvaldsdóttir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV):

High-performance genomics data visualization and exploration. Brief. Bioinform. 14,

178–192 (2013).

55.

Ekwall, K., Cranston, G. & Allshire, R. C. Fission yeast mutants that alleviate

transcriptional silencing in centromeric flanking repeats and disrupt chromosome

segregation. Genetics 153, 1153–1169 (1999).

56.

Barra, V. & Fachinetti, D. The dark side of centromeres: types, causes and

consequences of structural abnormalities implicating centromeric DNA. Nat. Commun. 9,

(2018).

57.

Santaguida, S. & Musacchio, A. The life and miracles of kinetochores. EMBO J. 28,

2511–2531 (2009).

58.

Scelfo, A. & Fachinetti, D. Keeping the centromere under control: A promising role for

DNA methylation. Cells 8, (2019).

59.

Gonzalez, M., He, H., Dong, Q., Sun, S. & Li, F. Ectopic centromere nucleation by

CENP-A in fission yeast. Genetics 198, 1433–1446 (2014).

60.

Choi, E. S. et al. Factors That Promote H3 Chromatin Integrity during Transcription

Prevent Promiscuous Deposition of CENP-ACnp1 in Fission Yeast. PLoS Genet. 8,

(2012).

56

61.

Kitagawa, T., Ishii, K., Takeda, K. & Matsumoto, T. The 19S proteasome subunit Rpt3

regulates distribution of CENP-A by associating with centromeric chromatin. Nat.

Commun. 5, 3597 (2014).

62.

Monahan, B. J. et al. Fission yeast SWI/SNF and RSC complexes show compositional

and functional differences from budding yeast. Nat. Struct. Mol. Biol. 8, 873–880 (2008).

63.

Takahashi, K., Chen, E. S. & Yanagida, M. Requirement of Mis6 centromere connector

for localizing a CENP-A-like protein in fission yeast. Science 288, 2215-2219 (2000).

64.

Castillo, A. G. et al. Telomeric Repeats Facilitate CENP-ACnp1 Incorporation via

Telomere Binding Proteins. PLoS One 8, (2013).

65.

Nakayama, J., Rice, J. C., Strahl, B. D., Allis, C. D. & Grewal, S. I. S. Role of Histone H3

Lysine 9 Methylation in Epigenetic Control of Heterochromatin Assembly. Science 292,

110–113 (2001).

66.

Olszak, A. M. et al. Heterochromatin boundaries are hotspots for de novo kinetochore

formation. Nat. Cell Biol. 13, 799–808 (2011).

67.

McKinley, K. L. & Cheeseman, I. M. The molecular basis for centromere identity and

function. Nat Rev Mol Cell Biol 17, 16–29 (2016).

68.

Tanaka, K., Chang, H. L., Kagami, A. & Watanabe, Y. Article CENP-C Functions as a

Scaffold for Effectors with Essential Kinetochore Functions in Mitosis and Meiosis. Dev.

Cell 17, 334–343 (2009).

69.

Hayashi, T. et al. Mis16 and Mis18 are required for CENP-A loading and histone

deacetylation at centromeres. Cell 118, 715–729 (2004).

70.

Williams, J. S., Hayashi, T., Yanagida, M. & Russell, P. Fission Yeast Scm3 Mediates

Stable Assembly of Cnp1/CENP-A into Centromeric Chromatin. Mol. Cell 33, 287–298

(2009).

71.

Lampert, F. & Westermann, S. A blueprint for kinetochores - New insights into the

molecular mechanics of cell division. Nat. Rev. Mol. Cell Biol. 12, 407–412 (2011).

72.

King, M. C., Drivas, T. G. & Blobel, G. A Network of Nuclear Envelope Membrane

Proteins Linking Centromeres to Microtubules. Cell 134, 427–438 (2008).

73.

Gonzalez, M., He, H., Sun, S., Li, C. & Li, F. Cell cycle-dependent deposition of CENP-A

requires the Dos1/2-Cdc20 complex. Proc. Natl. Acad. Sci. U. S. A. 110, 606–11 (2013).

74.

Verdaasdonk, J. S. & Bloom, K. Centromeres: unique chromatin structures that drive

chromosome segregation. Nat. Rev. Mol. Cell Biol. 12, 320–32 (2011).

75.

Ekwall, K. et al. Mutations in the fission yeast silencing factors clr4+ and rik1+ disrupt the

localisation of the chromo domain protein Swi6p and impair centromere function. J. Cell

Sci. 109, 2637–2648 (1996).

76.

Sugiyama, T. et al. SHREC, an Effector Complex for Heterochromatic Transcriptional

57

Silencing. Cell 128, 491–504 (2007).

77.

Wang, Y. et al. Histone H3 lysine 14 acetylation is required for activation of a DNA

damage checkpoint in fission yeast. J. Biol. Chem. 287, 4386–4393 (2012).

78.

Garcia, J. F., Dumesic, P. A., Hartley, P. D., El-Samad, H. & Madhani, H. D.

Combinatorial, site-specific requirement for heterochromatic silencing factors in the

elimination of nucleosome-free regions. Genes Dev. 24, 1758–1771 (2010).

79.

Lee, J. et al. Chromatin remodeller Fun30Fft3 induces nucleosome disassembly to

facilitate RNA polymerase II elongation. Nat. Commun. 8, (2017).

80.

Moyle-Heyrman, G. et al. Chemical map of Schizosaccharomyces pombe reveals

species-specific features in nucleosome positioning. Proc. Natl. Acad. Sci. U. S. A. 110,

20158–20163 (2013).

81.

Henikoff, S. et al. The budding yeast Centromere DNA Element II wraps a stable Cse4

hemisome in either orientation in vivo. Elife 3, 1–23 (2014).

82.

Biernat, E., Kinney, J., Dunlap, K., Rizza, C. & Govind, C. K. The RSC complex

remodels nucleosomes in transcribed coding sequences and promotes transcription in

Saccharomyces cerevisiae. Genetics 217, (2021).

83.

Noma, K. ichi, Cam, H. P., Maraia, R. J. & Grewal, S. I. S. A Role for TFIIIC

Transcription Factor Complex in Genome Organization. Cell 125, 859–872 (2006).

84.

Thakur, J., Talbert, P. B. & Henikoff, S. Inner kinetochore protein interactions with

regional centromeres of fission yeast. Genetics 201, 543–561 (2015).

85.

Takahashi, K., Murakami, S., Chikashige, Y., Niwa, O. & Yanagida, M. A large number of

tRNA genes are symmetrically located in fission yeast centromeres. J. Mol. Biol. 218,

13–17 (1991).

86.

Takahashi, K. et al. A low copy number central sequence with strict symmetry and

unusual chromatin structure in fission yeast centromere. Mol. Biol. Cell 3, 819–835

(1992).

87.

Partridge, J. F., Borgstrøm, B. & Allshire, R. C. Distinct protein interaction domains and

protein spreading in a complex centromere. Genes Dev. 14, 783–791 (2000).

88.

Scott, K. C., Merrett, S. L. & Willard, H. F. A heterochromatin barrier partitions the fission

yeast centromere into discrete chromatin domains. Curr. Biol. 16, 119–129 (2006).

89.

Iwasaki, O., Tanaka, A., Tanizawa, H., Grewal, S. I. S. & Noma, K.-I. Centromeric

localization of dispersed Pol III genes in fission yeast. Mol. Biol. Cell 21, 254–65 (2010).

90.

Gaither, T. L., Merrett, S. L., Pun, M. J. & Scott, K. C. Centromeric Barrier Disruption

Leads to Mitotic Defects in Schizosaccharomyces pombe. G3 (Bethesda). 4, 1–31

(2014).

91.

van Steensel, B. & Furlong, E. E. M. The role of transcription in shaping the spatial

58

organization of the genome. Nat. Rev. Mol. Cell Biol. 20, 327–337 (2019).

92.

Allshire, R. C., Nimmo, E. R., Ekwall, K., Javerzat, J. P. & Cranston, G. Mutations

derepressing silent centromeric domains in fission yeast disrupt chromosome

segregation. Genes Dev. 9, 218–233 (1995).

93.

Aygün, O., Mehta, S. & Grewal, S. I. S. HDAC-mediated suppression of histone turnover

promotes epigenetic stability of heterochromatin. Nat. Struct. Mol. Biol. 20, 547-555

(2013).

94.

Amato, A., Schillaci, T., Lentini, L. & Di Leonardo, A. CENPA overexpression promotes

genome instability in pRb-depleted human cells. Mol. Cancer 8, 119 (2009).

95.

Athwal, R. K. et al. CENP-A nucleosomes localize to transcription factor hotspots and

subtelomeric sites in human cancer cells. Epigenetics and Chromatin 8, 1–23 (2015).

96.

Wang, J., Lawry, S. T., Cohen, A. L. & Jia, S. Chromosome boundary elements and

regulation of heterochromatin spreading. Cell. Mol. Life Sci. 71, 4841–4852 (2014).

97.

Shandilya, J. et al. Centromeric histone variant CENP-A represses acetylationdependent chromatin transcription that is relieved by histone chaperone NPM1. J.

Biochem. 156, 221-227 (2014).

98.

Cam, H. P., Noma, K.-I., Ebina, H., Levin, H. L. & Grewal, S. I. S. Host genome

surveillance for retrotransposons by transposon-derived proteins. Nature 451, 431–436

(2008).

99.

Zaratiegui, M. et al. CENP-B preserves genome integrity at replication forks paused by

retrotransposon LTR. Nature 469, 112–115 (2011).

100.

Schlichter, A., Kasten, M. M., Parnell, T. J. & Cairns, B. R. Specialization of the

chromatin remodeler RSC to mobilize partially-unwrapped nucleosomes. Elife 9, 1–29

(2020).

101.

Bi, X., Yu, Q., Sandmeier, J. J. & Zou, Y. Formation of Boundaries of Transcriptionally

Silent Chromatin by Nucleosome-Excluding Structures. Mol. Cell. Biol. 24, 2118–2131

(2004).

102.

Raab, J. R. et al. Human tRNA genes function as chromatin insulators. EMBO J. 31,

330–350 (2011).

103.

Scott, K. C., White, C. V. & Willard, H. F. An RNA polymerase III-dependent

heterochromatin barrier at fission yeast centromere 1. PLoS One 2, (2007).

104.

Allshire, R. C. & Madhani, H. D. Ten principles of heterochromatin formation and

function. Nat. Rev. Mol. Cell Biol. 19, 229–244 (2018).

105.

Sekulic, N. & Black, B. E. A reader for centromeric chromatin. Nat. Cell Biol. 11, 793–5

(2009).

106.

Bernard, P. et al. Requirement of heterochromatin for cohesion at centromeres. Science

59

294, 2539–2542 (2001).

107.

Ohzeki, J. ichirou et al. KAT7/HBO1/MYST2 Regulates CENP-A Chromatin Assembly by

Antagonizing Suv39h1-Mediated Centromere Inactivation. Dev. Cell 37, 413–427 (2016).

108.

Versteege, I. et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer.

Nature 394, 203–206 (1998).

109.

Wang, X., Haswell, J. R. & Roberts, C. W. M. Molecular pathways: SWI/SNF (BAF)

complexes are frequently mutated in cancer-mechanisms and potential therapeutic

insights. Clin. Cancer Res. 20, 21–27 (2014).

110.

Arunkumar, G., Baek, S., Sturgill, D., Bui, M. & Dalal, Y. Oncogenic lncRNAs alter

epigenetic memory at a fragile chromosomal site in human cancer cells. Sci. Adv. 8, 1–

17 (2022).

60

謝辞

本研究を行うにあたり、終始私の意思を尊重してくださった村上洋太先生に厚く御礼申

し上げます。

抗 Cnp1 抗体を石井浩二郎博士から、抗 H3K9me 抗体を浦野健博士から、抗 H3K14ac

抗体を木村宏博士から分与して頂きました。セントロメア境界領域に ura4+が挿入された分

裂酵母株および Cnp1 過剰発現プラスミドを Robin Allshire 博士から、snf21-36 変異株を

太田邦史博士から分与して頂きました。次世代シーケンシングを鈴木穣博士に、次世代シー

ケンシングデータの解析サポートを加藤太陽博士に行って頂きました。本研究のさきがけ

となる実験を中川浩実博士に行って頂きました。皆様のご協力に感謝を申し上げます。

本研究について議論して下さった高橋正行博士、高畑信也博士、佐藤勇太博士、浅沼高寛

氏に感謝を申し上げます。

最後に、私の自由を尊重し見守ってくれた家族と友人達に心から感謝します。

本学位論文は以下の学術論文の内容に基づいて書かれたものである。

The chromatin remodeler RSC prevents ectopic CENP-A propagation into pericentromeric

heterochromatin at the chromatin boundary

Satoru Tsunemine, Hiromi Nakagawa, Yutaka Suzuki and Yota Murakami

Nucleic Acids Research, Volume 50, Issue 19, 28 October 2022, Pages 10914-10928.

61

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る