リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Construction and Validation of an Image Discrimination Algorithm to Discriminate Necrosis from Wounds in Pressure Ulcers」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Construction and Validation of an Image Discrimination Algorithm to Discriminate Necrosis from Wounds in Pressure Ulcers

Sakakibara, Shunsuke Takekawa, Akira Takekawa, Chikara Nagai, Satoshi Terashi, Hiroto 神戸大学

2023.03

概要

Artificial intelligence (AI) in medical care can raise diagnosis accuracy and improve its uniformity. This study developed a diagnostic imaging system for chronic wounds that can be used in medically underpopulated areas. The image identification algorithm searches for patterns and makes decisions based on information obtained from pixels rather than images. Images of 50 patients with pressure sores treated at Kobe University Hospital were examined. The algorithm determined the presence of necrosis with a significant difference (p = 3.39 × 10⁻⁵). A threshold value was created with a luminance difference of 50 for the group with necrosis of 5% or more black pixels. In the no-necrosis group with less than 5% black pixels, the threshold value was created with a brightness difference of 100. The “shallow wounds” were distributed below 100, whereas the “deep wounds” were distributed above 100. When the algorithm was applied to 24 images of 23 new cases, there was 100% agreement between the specialist and the algorithm regarding the presence of necrotic tissue and wound depth evaluation. The algorithm identifies the necrotic tissue and wound depth without requiring a large amount of data, making it suitable for application to future AI diagnosis systems for chronic wounds.

この論文で使われている画像

参考文献

1.

2.

3.

Wu, H.; Sun, W.; Huang, X.; Yu, S.; Wang, H.; Bi, X.; Sheng, J.; Chen, S.; Akinwunmi, B.; Zhang, C.J.P.; et al. Online Antenatal Care

During the COVID-19 Pandemic: Opportunities and Challenges. J. Med. Internet Res. 2020, 22, e19916. [CrossRef]

Doraiswamy, S.; Abraham, A.; Mamtani, R.; Cheema, S. Use of Telehealth During the COVID-19 Pandemic: Scoping Review.

J. Med Internet Res. 2020, 22, e24087. [CrossRef]

Garfan, S.; Alamoodi, A.H.; Zaidan, B.; Al-Zobbi, M.; Hamid, R.A.; Alwan, J.K.; Ahmaro, I.Y.; Khalid, E.T.; Jumaah, F.; Albahri,

O.; et al. Telehealth utilization during the Covid-19 pandemic: A systematic review. Comput. Biol. Med. 2021, 138, 104878.

[CrossRef] [PubMed]

J. Clin. Med. 2023, 12, 2194

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

14 of 14

Khoshrounejad, F.; Hamednia, M.; Mehrjerd, A.; Pichaghsaz, S.; Jamalirad, H.; Sargolzaei, M.; Hoseini, B.; Aalaei, S. TelehealthBased Services During the COVID-19 Pandemic: A Systematic Review of Features and Challenges. Front. Public. Health

2021, 9, 977. [CrossRef]

Wiklund, P.; Medson, K.; Elf, J. Incidental pulmonary embolism in patients with cancer: Prevalence, underdiagnosis and

evaluation of an AI algorithm for automatic detection of pulmonary embolism. Eur. Radiol. 2022, 33, 1185–1193. [CrossRef]

[PubMed]

Ginat, D. Implementation of Machine Learning Software on the Radiology Worklist Decreases Scan View Delay for the Detection

of Intracranial Hemorrhage on CT. Brain Sci. 2021, 11, 832. [CrossRef] [PubMed]

Veredas, F.J.; Luque-Baena, R.M.; Martín-Santos, F.J.; Morilla-Herrera, J.C.; Morente, L. Wound image evaluation with machine

learning. Neurocomputing 2015, 164, 112–122. [CrossRef]

Zahia, S.; Sierra-Sosa, D.; Garcia-Zapirain, B.; Elmaghraby, A. Tissue classification and segmentation of pressure injuries using

convolutional neural networks. Comput. Methods Programs Biomed. 2018, 159, 51–58. [CrossRef]

Chang, C.W.; Christian, M.; Chang, D.H.; Lai, F.; Liu, T.J.; Chen, Y.S.; Chen, W.J. Deep learning approach based on superpixel

segmentation assisted labeling for automatic pressure ulcer diagnosis. PLoS ONE 2022, 17, e0264139. [CrossRef]

Zahia, S.; Zapirain, M.B.G.; Sevillano, X.; González, A.; Kim, P.J.; Elmaghraby, A. Pressure injury image analysis with machine

learning techniques: A systematic review on previous and possible future methods. Artif. Intell. Med. 2019, 102, 101742. [CrossRef]

Anisuzzaman, D.M.; Wang, C.; Rostami, B.; Gopalakrishnan, S.; Niezgoda, J.; Yu, Z. Image-Based Artificial Intelligence in Wound

Assessment: A Systematic Review. Adv. Wound Care 2022, 11, 687–709. [CrossRef]

Wannous, H.; Lucas, Y.; Treuillet, S. Efficient SVM Classifier Based on Color and Texture Region Features for Wound Tissue

Images. Proc. SPIE-Int. Soc. Opt. Eng. 2008, 6915, 861–870. [CrossRef]

Wannous, H.; Lucas, Y.; Treuillet, S. Enhanced Assessment of the Wound-Healing Process by Accurate Multiview Tissue

Classification. IEEE Trans. Med. Imaging 2010, 30, 315–326. [CrossRef]

Gray, D.; White, R.; Cooper, P.; Kingsley, A. Understanding applied wound management. Wounds UK 2005, 1, 62–68.

Shakhnarovich, G.; Darrell, T.; Indyk, P. Nearest-Neighbor Methods in Learning and Vision: Theory and Practice; The MIT Press:

Cambridge, MA, USA, 2006.

Barbieri, M.; Wilmoth, J.R.; Shkolnikov, V.M.; Glei, D.; Jasilionis, D.; Jdanov, D.; Boe, C.; Riffe, T.; Grigoriev, P.; Winant, C. Data

Resource Profile: The Human Mortality Database (HMD). Leuk. Res. 2015, 44, 1549–1556. [CrossRef] [PubMed]

Wilmoth, J.R. Increase of human longevity: Past, present, and future. J. Popul. Probl. 2010, 66, 32–39.

Zarchi, K.; Haugaard, V.B.; Dufour, D.N.; Jemec, G. Expert Advice Provided through Telemedicine Improves Healing of Chronic

Wounds: Prospective Cluster Controlled Study. J. Investig. Dermatol. 2015, 135, 895–900. [CrossRef]

Barakat-Johnson, M.; Jones, A.; Burger, M.; Leong, T.; Frotjold, A.; Randall, S.; Kim, B.; Fethney, J.; Coyer, F. Reshaping wound

care: Evaluation of an artificial intelligence app to improve wound assessment and management amid the COVID-19 pandemic.

Int. Wound J. 2022, 19, 1561–1577. [CrossRef]

Howell, R.S.; Liu, H.H.; Khan, A.A.; Woods, J.S.; Lin, L.J.; Saxena, M.; Saxena, H.; Castellano, M.; Petrone, P.; Slone, E.; et al.

Development of a Method for Clinical Evaluation of Artificial Intelligence–Based Digital Wound Assessment Tools. JAMA Netw.

Open 2021, 4, e217234. [CrossRef]

Iizaka, S.; Kaitani, T.; Sugama, J.; Nakagami, G.; Naito, A.; Koyanagi, H.; Konya, C.; Sanada, H. Predictive validity of granulation

tissue color measured by digital image analysis for deep pressure ulcer healing: A multicenter prospective cohort study. Wound

Repair Regen. 2012, 21, 25–34. [CrossRef] [PubMed]

Chan, K.S.; Chan, Y.M.; Tan, A.H.M.; Liang, S.; Cho, Y.T.; Hong, Q.; Yong, E.; Chong, L.R.C.; Zhang, L.; Tan, G.W.L.; et al. Clinical

validation of an artificial intelligence-enabled wound imaging mobile application in diabetic foot ulcers. Int. Wound J. 2021, 19,

114–124. [CrossRef] [PubMed]

˙ E.; Kazys, R. Principles of high-frequency ultrasonograJasaitiene, D.; Valiukeviciene, S.; Linkeviciute, G.; Raisutis, R.; Jasiunien

e,

phy for investigation of skin pathology. J. Eur. Acad. Dermatol. Venereol. 2010, 25, 375–382. [CrossRef] [PubMed]

Langemo, D.; Spahn, J.; Spahn, T.; Pinnamaneni, V.C. Comparison of Standardized Clinical Evaluation of Wounds Using Ruler

Length by Width and Scout Length by Width Measure and Scout Perimeter Trace. Adv. Ski. Wound Care 2015, 28, 116–121.

[CrossRef] [PubMed]

Langemo, D.K.; Spahn, J.G. A Reliability Study Using a Long-Wave Infrared Thermography Device to Identify Relative Tissue

Temperature Variations of the Body Surface and Underlying Tissue. Adv. Ski. Wound Care 2017, 30, 109–119. [CrossRef] [PubMed]

Au, Y.; Beland, B.; Anderson, J.A.E.; Sasseville, D.; Wang, S.C. Time-Saving Comparison of Wound Measurement Between the

Ruler Method and the Swift Skin and Wound App. J. Cutan. Med. Surg. 2019, 23, 226–228. [CrossRef] [PubMed]

Quan, S.Y.; Lazarus, G.S.; Kohli, A.R.; Kapoor, R.; Margolis, D.J. Digital Imaging of Wounds: Are Measurements Reproducible

Among Observers? Int. J. Low. Extrem. Wounds 2007, 6, 245–248. [CrossRef] [PubMed]

Khong, P.C.B.; Yeo, M.S.W.; Goh, C.C. Evaluating an iPad app in measuring wound dimension: A pilot study. J. Wound Care 2017,

26, 752–760. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る