リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The landscape of genetic aberrations in myxofibrosarcoma」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The landscape of genetic aberrations in myxofibrosarcoma

Takeuchi, Yasuhide Yoshida, Kenichi Halik, Adriane Kunitz, Annegret Suzuki, Hiromichi Kakiuchi, Nobuyuki Shiozawa, Yusuke Yokoyama, Akira Inoue, Yoshikage Hirano, Tomonori Yoshizato, Tetsuichi Aoki, Kosuke Fujii, Yoichi Nannya, Yasuhito Makishima, Hideki Pfitzner, Berit Maria Bullinger, Lars Hirata, Masahiro Jinnouchi, Keita Shiraishi, Yuichi Chiba, Kenichi Tanaka, Hiroko Miyano, Satoru Okamoto, Takeshi Haga, Hironori Ogawa, Seishi Damm, Frederik 京都大学 DOI:10.1002/ijc.34051

2022.08.15

概要

Myxofibrosarcoma (MFS) is a rare subtype of sarcoma, whose genetic basis is poorly understood. We analyzed 69 MFS cases using whole-genome (WGS), whole-exome (WES) and/or targeted-sequencing (TS). Newly sequenced genomic data were combined with additional deposited 116 MFS samples. WGS identified a high number of structural variations (SVs) per tumor most frequently affecting the TP53 and RB1 loci, 40% of tumors showed a BRCAness-associated mutation signature, and evidence of chromothripsis was found in all cases. Most frequently mutated/copy number altered genes affected known disease drivers such as TP53 (56.2%), CDKN2A/B (29.7%), RB1 (27.0%), ATRX (19.5%) and HDLBP (18.9%). Several previously unappreciated genetic aberrations including MUC17, FLG and ZNF780A were identified in more than 20% of patients. Longitudinal analysis of paired diagnosis and relapse time points revealed a 1.2-fold mutation number increase accompanied with substantial changes in clonal composition over time. Our study highlights the genetic complexity underlying sarcomagenesis of MFS.

この論文で使われている画像

関連論文

参考文献

1. WHO. Classification of Tumours Editorial B: Soft Tissue and Bone Tumours. Lyon, France: International Agency for Research on Cancer (IARC); 2020.

2. Antonescu C. Round cell sarcomas beyond Ewing: emerging entities.Histopathology. 2014;64:26-37.

3. Helman LJ, Meltzer P. Mechanisms of sarcoma development. Nat Rev Cancer. 2003;3:685-694.

4. Heinrich MC, Corless CL, Duensing A, et al. PDGFRA activating muta- tions in gastrointestinal stromal tumors. Science. 2003;299:708-710.

5. Hirota S, Isozaki K, Moriyama Y, et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science. 1998;279: 577-580.

6. Chudasama P, Mughal SS, Sanders MA, et al. Integrative genomic and transcriptomic analysis of leiomyosarcoma. Nat Commun. 2018;9:144.

7. Ogura K, Hosoda F, Arai Y, et al. Integrated genetic and epigenetic analysis of myxofibrosarcoma. Nat Commun. 2018;9:2765.

8. Barretina J, Taylor BS, Banerji S, et al. Subtype-specific genomic alter- ations define new targets for soft-tissue sarcoma therapy. Nat Genet. 2010;42:715-721.

9. Cancer Genome Atlas Research Network. Comprehensive and inte- grated genomic characterization of adult soft tissue sarcomas. Cell. 2017;171:950-965.

10. Mentzel T, Calonje E, Wadden C, et al. Clinicopathologic analysis of 75 cases with emphasis on the low-grade variant. Am J Surg Pathol. 1996;20:391-405.

11. Shimada S, Ishizawa T, Ishizawa K, Matsumura T, Hasegawa T, Hirose T. The value of MDM2 and CDK4 amplification levels using real-time polymerase chain reaction for the differential diagnosis of liposarcomas and their histologic mimickers. Hum Pathol. 2006;37: 1123-1129.

12. Ishibashi H, Suzuki T, Suzuki S, et al. Sex steroid hormone receptors in human thymoma. J Clin Endocrinol Metab. 2003;88:2309-2317.

13. Polprasert C, Takeuchi Y, Kakiuchi N, et al. Frequent germline muta- tions of HAVCR2 in sporadic subcutaneous panniculitis-like T-cell lymphoma. Blood Adv. 2019;3:588-595.

14. Hoyer K, Hablesreiter R, Inoue Y, et al. A genetically defined signature of responsiveness to erlotinib in early-stage pancreatic cancer patients: results from the CONKO-005 trial. EBioMedicine. 2021;66:103327.

15. Mylonas E, Yoshida K, Frick M, et al. Single-cell analysis based dis- section of clonality in myelofibrosis. Nat Commun. 2020;11:73.

16. Yokoyama A, Kakiuchi N, Yoshizato T, et al. Age-related remodelling of oesophageal epithelia by mutated cancer drivers. Nature. 2019; 565:312-317.

17. Alexandrov LB, Kim J, Haradhvala NJ, et al. The repertoire of muta- tional signatures in human cancer. Nature. 2020;578:94-101.

18. Hochberg Y, Benjamini Y. More powerful procedures for multiple sig- nificance testing. Stat Med. 1990;9:811-818.

19. Powell SN, Kachnic LA. Roles of BRCA1 and BRCA2 in homologous recombination, DNA replication fidelity and the cellular response to ionizing radiation. Oncogene. 2003;22:5784-5791.

20. Radhakrishnan SK, Bebb DG, Lees-Miller SP. Targeting ataxia- telangiectasia mutated deficient malignancies with poly ADP ribose polymerase inhibitors. Transl Cancer Res. 2013;2:155-162.

21. Cortes-Ciriano I, Lee JJ, Xi R, et al. Comprehensive analysis of chro- mothripsis in 2,658 human cancers using whole-genome sequencing. Nat Genet. 2020;52:331-341.

22. Yoon NA, Jung SJ, Choi SH, et al. DRG2 supports the growth of pri- mary tumors and metastases of melanoma by enhancing VEGF-A expression. FEBS J. 2020;287:2070-2086.

23. Behjati S, Tarpey PS, Haase K, et al. Recurrent mutation of IGF signal- ling genes and distinct patterns of genomic rearrangement in osteo- sarcoma. Nat Commun. 2017;8:15936.

24. Zhang X, Ren D, Guo L, et al. Thymosin beta 10 is a key regulator of tumorigenesis and metastasis and a novel serum marker in breast can- cer. Breast Cancer Res. 2017;19:15.

25. Goh JY, Feng M, Wang W, et al. Chromosome 1q21.3 amplification is a trackable biomarker and actionable target for breast cancer recur- rence. Nat Med. 2017;23:1319-1330.

26. Melchor L, Saucedo-Cuevas LP, Munoz-Repeto I, et al. Comprehen- sive characterization of the DNA amplification at 13q34 in human breast cancer reveals TFDP1 and CUL4A as likely candidate target genes. Breast Cancer Res. 2009;11:R86.

27. Fei Q, Shang K, Zhang J, et al. Histone methyltransferase SETDB1 regulates liver cancer cell growth through methylation of p53. Nat Commun. 2015;6:8651.

28. Gay CM, Balaji K, Byers LA. Giving AXL the axe: targeting AXL in human malignancy. Br J Cancer. 2017;116:415-423.

29. Mariani O, Brennetot C, Coindre JM, et al. JUN oncogene amplifica- tion and overexpression block adipocytic differentiation in highly aggressive sarcomas. Cancer Cell. 2007;11:361-374.

30. Helias-Rodzewicz Z, Perot G, Chibon F, et al. YAP1 and VGLL3, encoding two cofactors of TEAD transcription factors, are amplified and overexpressed in a subset of soft tissue sarcomas. Genes Chromo- somes Cancer. 2010;49:1161-1171.

31. Flynn EK, Kamat A, Lach FP, et al. Comprehensive analysis of patho- genic deletion variants in Fanconi anemia genes. Hum Mutat. 2014; 35:1342-1353.

32. Shu XS, Li L, Ji M, et al. FEZF2, a novel 3p14 tumor suppressor gene, represses oncogene EZH2 and MDM2 expression and is frequently methylated in nasopharyngeal carcinoma. Carcinogenesis. 2013;34: 1984-1993.

33. Cuppens T, Moisse M, Depreeuw J, et al. Integrated genome analysis of uterine leiomyosarcoma to identify novel driver genes and target- able pathways. Int J Cancer. 2018;142:1230-1243.

34. Melhuish TA, Kowalczyk I, Manukyan A, et al. Myt1 and Myt1l tran- scription factors limit proliferation in GBM cells by repressing YAP1 expression. Biochim Biophys Acta Gene Regul Mech. 2018;1861: 983-995.

35. Li J, Lu D, Dou H, et al. Desumoylase SENP6 maintains osteochondroprogenitor homeostasis by suppressing the p53 path- way. Nat Commun. 2018;9:143.

36. Yu X, Li Z, Shen J. BRD7: a novel tumor suppressor gene in different cancers. Am J Transl Res. 2016;8:742-748.

37. Yang J, Du X, Chen K, et al. Genetic aberrations in soft tissue leiomyosarcoma. Cancer Lett. 2009;275:1-8.

38. Liegl-Atzwanger B, Heitzer E, Flicker K, et al. Exploring chromosomal abnormalities and genetic changes in uterine smooth muscle tumors. Mod Pathol. 2016;29:1262-1277.

39. Skaaby T, Husemoen LL, Thyssen JP, et al. Filaggrin loss-of-function mutations and incident cancer: a population-based study. Br J Dermatol. 2014;171:1407-1414.

40. Kovac M, Blattmann C, Ribi S, et al. Exome sequencing of osteosar- coma reveals mutation signatures reminiscent of BRCA deficiency. Nat Commun. 2015;6:8940.

41. Heitzer E, Sunitsch S, Gilg MM, et al. Expanded molecular profiling of myxofibrosarcoma reveals potentially actionable targets. Mod Pathol. 2017;30:1698-1709.

42. Cheng J, Demeulemeester J, Wedge DC, et al. Pan-cancer analysis of homozygous deletions in primary tumours uncovers rare tumour sup- pressors. Nat Commun. 2017;8:1221.

43. Kobel M, Ronnett BM, Singh N, Soslow RA, Gilks CB, McCluggage WG. Interpretation of P53 immunohistochemistry in endometrial carcinomas: toward increased reproducibility. IntJ Gynecol Pathol. 2019;38(Suppl 1): S123-S131.

44. Yemelyanova A, Vang R, Kshirsagar M, et al. Immunohistochemi- cal staining patterns of p53 can serve as a surrogate marker for TP53 mutations in ovarian carcinoma: an immunohistochemical and nucleotide sequencing analysis. Mod Pathol. 2011;24:1248- 1253.

45. Heaphy CM, de Wilde RF, Jiao Y, et al. Altered telomeres in tumors with ATRX and DAXX mutations. Science. 2011;333:425.

46. Jiao Y, Shi C, Edil BH, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 2011;331:1199-1203.

47. Kong LJ, Meloni AR, Nevins JR. The Rb-related p130 protein controls telomere lengthening through an interaction with a Rad50-interacting protein, RINT-1. Mol Cell. 2006;22:63-71.

48. Molyneux SD, Waterhouse PD, Shelton D, et al. Human somatic cell mutagenesis creates genetically tractable sarcomas. Nat Genet. 2014; 46:964-972.

49. Consortium APG. AACR project GENIE: powering precision medicine through an international consortium. Cancer Discov. 2017;7:818-831.

50. Roth A, Khattra J, Yap D, et al. PyClone: statistical inference of clonal population structure in cancer. Nat Methods. 2014;11:396-398.

51. Chen X, Bahrami A, Pappo A, et al. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep. 2014;7:104-112.

52. Sallman DA, DeZern AE, Garcia-Manero G, et al. Eprenetapopt (APR- 246) and Azacitidine in TP53-mutant myelodysplastic syndromes. J Clin Oncol. 2021;39:1584-1594.

53. Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature. 1993;362:857-860.

54. Wang W, Qin JJ, Rajaei M, et al. Targeting MDM2 for novel molecular therapy: beyond oncology. Med Res Rev. 2020;40:856-880.

55. Fong PC, Boss DS, Yap TA, et al. Inhibition of poly(ADP-ribose) poly- merase in tumors from BRCA mutation carriers. N Engl J Med. 2009; 361:123-134.

56. Davies H, Glodzik D, Morganella S, et al. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat Med. 2017;23:517-525.

57. Koelsche C, Schrimpf D, Stichel D, et al. Sarcoma classification by DNA methylation profiling. Nat Commun. 2021;12:498.

58. Anderson ND, Babichev Y, Fuligni F, et al. Lineage-defined leiomyosarcoma subtypes emerge years before diagnosis and deter- mine patient survival. Nat Commun. 2021;12:4496.

59. Steele CD, Tarabichi M, Oukrif D, et al. Undifferentiated sarcomas develop through distinct evolutionary pathways. Cancer Cell. 2019; 35:441-456.

60. Yang WL, Wei L, Huang WQ, et al. Vigilin is overexpressed in hepato- cellular carcinoma and is required for HCC cell proliferation and tumor growth. Oncol Rep. 2014;31:2328-2334.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る