リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Radiation dose reduction to the eye lens in head CT using tungsten functional paper and organ-based tube current modulation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Radiation dose reduction to the eye lens in head CT using tungsten functional paper and organ-based tube current modulation

小坂 浩之 近畿大学

2022.02.28

概要

Purpose: We investigated whether a tungsten functional paper (TFP) shield and/or organ-based tube curren modulation (TCM) can reduce the dose to the eye lens.

Materials and methods: All scans were performed using our routine head examination protocol (spiral acquisition, 120 kVp, noise Index 3.5) with an anthropomorphic head phantom. The dose reduction rate was measured by the following methods with a scintillation fiber optic dosimeter: (a) without any dose reduction techniques (Original scan), (b) TFP shield, (c) TCM, and (d) TFP shield plus TCM. Image noise and CT number were obtained and compared between the three groups. In addition, image noise in method (d) was measured with varying distances between the TFP shield and eye lens.

Results: The reduction rates using TFP shield, TCM, and TFP shield plus TCM compared with those for the Original scan were 17.8 %, 13.6 %, and 27.7 %, respectively. Image noise (mean ± standard deviation) in the anterior region for the Original scan, TFP shield, TCM, and TFP shield plus TCM were 4.1 ± 0.2, 4.6 ± 0.2, 4.4 ± 0.3, and 5.0 ± 0.2, while the CT numbers were 19.3 ± 0.8, 23.8 ± 0.8, 19.6 ± 0.8, and 24.1 ± 0.8, respectively. Increasing the distance between the TFP and the eye significantly decreased the CT number when using TFP shield plus TCM (p < .05).

Conclusion: TFP shield plus TCM reduced the dose to the eye lens in head CT while maintaining image quality with an air gap between the TFP and skin surface.

参考文献

[1] A. Berrington de Gonzalez, S. Darby, Risk of cancer from diagnostic x-rays: estimates for the UK and 14 other countries, Lancet 363 (2004) 345–351, https://doi. org/10.1016/S0140-6736(04)15433-0.

[2] Diagnostic reference levels based on latest surveys in Japan — Japan DRLs 2015 —, Med. Expo. Res. Inf. Netw. (2015) 1–17.

[3] ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs — threshold doses for tissue reactions in a radiation protection context, ICRP Publ. 118 (41) (2012) 1–322, https://doi.org/10.1016/j.icrp.2012. 02.001.

[4] D. Rempel, The leadexposed worker, J. Am. Med. Assoc. 262 (1989) 532–534.

[5] H. Needleman, Lead poisoning, Annu. Rev. Med. 55 (2004) 209–222, https://doi. org/10.1146/annurev.med.55.091902.103653.

[6] J.H. Hubbell, S.M. Seltzer, Tables of x-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements Z=1 to 92 and 48 additional substances of dosimetric interest electronic resource, Natl. Inst. Stand. Technol. Gaithersbg. (1996), http://physics.nist.gov/PhysRefData/XrayMassCoef/ cover.html.

[7] P.H. Murphy, Y. Wu, S.A. Glaze, Attenuation properties of lead composite aprons, Radiology 186 (1993) 269–272.

[8] J.P. McCaffrey, H. Shen, B. Downton, E. Mainegra-Hing, Radiation attenuation by lead and nonlead materials used in radiation shielding garments, Med. Phys. 34 (2007) 530–537, https://doi.org/10.1118/1.2426404.

[9] J.P. McCaffrey, E. Mainegra-Hing, H. Shen, Optimizing non-Pb radiation shielding materials using bilayers, Med. Phys. 36 (2009) 5586–5594, https://doi.org/10. 1118/1.3260839.

[10] L. Gbelcová, D. Nikodemová, M. Horváthová, Dose reduction using bismuth shielding during paediatric CT examinations in Slovakia, Radiat. Prot. Dosimetry 147 (2011) 160–163, https://doi.org/10.1093/rpd/ncr336.

[11] J. Wang, X. Duan, J. Christner, S. Lang, K.L. Grant, C.H. Mccollough, Bismuth shielding, organ-based tube current modulation, and global reduction of tube current for dose reduction to the eye at head CT, Radiology 262 (2012) 191–198, https://doi.org/10.1148/radiol.11110470.

[12] M. Peuster, C. Fink, C. Von Schnakenburg, Biocompatibility of corroding tungsten coils: in vitro assessment of degradation kinetics and cytotoxicity on human cells, Biomaterials 24 (2003) 4057–4061, https://doi.org/10.1016/S0142-9612(03) 00274-6.

[13] H. Monzen, M. Tamura, K. Kijima, M. Otsuka, K. Matsumoto, Estimation of radiation shielding ability in electron therapy and brachytherapy with real time variable shape tungsten rubber, Phys. Medica 66 (2019) 29–35, https://doi.org/10.1016/j. ejmp.2019.09.233.

[14] T. Fujimoto, H. Monzen, M. Nakata, T. Okada, S. Yano, T. Takakura, J. Kuwahara, M. Sasaki, K. Higashimura, M. Hiraoka, Dosimetric shield evaluation with tungsten sheet in 4, 6, and 9MeV electron beams, Phys. Medica 30 (2014) 838–842, https:// doi.org/10.1016/j.ejmp.2014.05.009.

[15] M. Inada, H. Monzen, K. Matsumoto, M. Tamura, T. Minami, K. Nakamatsu, Y. Nishimura, A novel radiation-shielding undergarment using tungsten functional paper for patients with permanent prostate brachytherapy, J. Radiat. Res. (2018) 1–5, https://doi.org/10.1093/jrr/rry030.

[16] H. Monzen, I. Kanno, T. Fujimoto, M. Hiraoka, Estimation of the shielding ability of a tungsten functional paper for diagnostic x-rays and gamma rays, J. Appl. Clin. Med. Phys. 18 (2017) 325–329, https://doi.org/10.1002/acm2.12122.

[17] T. Kamomae, H. Monzen, M. Kawamura, K. Okudaira, T. Nakaya, T. Mukoyama, Y. Miyake, Y. Ishihara, Y. Itoh, S. Naganawa, Dosimetric feasibility of using tungsten-based functional paper for flexible chest wall protectors in intraoperative electron radiotherapy for breast cancer, Phys. Med. Biol. 63 (2018) 15006, https:// doi.org/10.1088/1361-6560/aa96cf.

[18] M. Tamura, H. Monzen, K. Kubo, M. Hirata, Y. Nishimura, Feasibility of tungsten functional paper in electron grid therapy: a Monte Carlo study, Phys. Med. Biol. 62 (2017) 878–889, https://doi.org/10.1088/1361-6560/62/3/878.

[19] H. Monzen, M. Tamura, K. Shimomura, Y. Onishi, S. Nakayama, T. Fujimoto, K. Matsumoto, K. Hanaoka, T. Kamomae, A novel radiation protection device based on tungsten functional paper for application in interventional radiology, J. Appl. Clin. Med. Phys. 18 (2017) 215–220, https://doi.org/10.1002/acm2.12083.

[20] Y. Kawai, M. Tamura, M. Amano, T. Kamomae, H. Monzen, Dosimetric characterization of a novel surface collimator with tungsten functional paper for electron therapy, Anticancer Res. 39 (2019) 2839–2843, https://doi.org/10.21873/ anticanres.13412.

[21] K. Kijima, H. Monzen, Y. Nishimura, K. Matsumoto, M. Tamura, The shielding ability of novel tungsten rubber against the electron beam for clinical use in radiation therapy, Anticancer Res. 38 (2018) 3919–3927, https://doi.org/10.21873/ anticanres.12677.

[22] H. Kosaka, H. Monzen, K. Matsumoto, M. Tamura, Y. Nishimura, Reduction of operator hand exposure in interventional radiology with a novel finger sack using tungsten-containing rubber, Health Phys. 116 (2019) 625–630, https://doi.org/10. 1097/HP.0000000000000992.

[23] K. Kijima, A. Krisanachinda, M. Tamura, Y. Nishimura, H. Monzen, Feasibility of a tungsten rubber grid collimator for electron grid therapy, Anticancer Res. 39 (2019) 2799–2804, https://doi.org/10.21873/anticanres.13407.

[24] X. Duan, J. Wang, J. Christner, S. Leng, K. Grant, C. Mccollough, Dose reduction to anterior surface with organ‐based tube current modulation: evaluation of performance in a phantom study, Am. J. Roentgenol. 197 (2011) 689–695, https://doi. org/10.2214/AJR.10.6061.

[25] A.J. Reimann, C. Davison, T. Bjarnason, T. Yogesh, K. Kryzmyk, J. Mayo, S. Nicolaou, Organ-based computed tomographic (CT) radiation dose reduction to the lenses: impact on image quality for CT of the head, J. Comput. Assist. Tomogr. 36 (2012) 334–338, https://doi.org/10.1097/RCT.0b013e318251ec61.

[26] M.T. Dixon, R.J. Loader, G.C. Stevens, N.P. Rowles, An evaluation of organ dose modulation on a GE optima CT660-computed tomography scanner, J. Appl. Clin. Med. Phys. 17 (2016) 380–391, https://doi.org/10.1120/jacmp.v17i3.5724.

[27] F. Sato, T. Honda, Y. Haga, Y. Inaba, Y. Kaga, K. Chida, Basic characteristic evaluation of the real - time model MOSFET dosimeter, Bull. Sch. Heal. Sci. Tohoku Univ. 26 (2017) 57–65.

[28] Medical diagnostic x-ray equipment - radiation conditions for use in the determination of characteristics, IEC 61267 (2005) 1–94.

[29] H. Tomita, K. Morozumi, Measurement of scatter radiation on MDCT equipment using an OSL dosimeter, Nihon Hoshasen Gijutsu Gakkai Zasshi 60 (2004) 1550–1554.

[30] Y. Ishihara, Low dose technologies on computed tomography, Med. Imag. Tech. 32 (2014) 249–254.

[31] J. Geleijns, M. Salvadó Artells, W.J. Veldkamp, M. López Tortosa, Quantitative assessment of selective in-plane shielding of tissues in computed tomography through evaluation of absorbed dose and image quality, Eur. Radiol. 16 (2006) 2334–2340, https://doi.org/10.1007/s00330-006-0217-2.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る