リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A new insight into GH regulation and its disturbance from nutrition and autoimmune perspectives」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A new insight into GH regulation and its disturbance from nutrition and autoimmune perspectives

Yamamoto, Masaaki 山本, 雅昭 ヤマモト, マサアキ Bando,Hironori 神戸大学

2023

概要

GH activates GH receptors, which activates IGF-1 in the liver through a cascade of processes. The GH/IGF-1 axis plays an important role in the regulation of metabolism. Insufficient GH secretion results in short stature in childhood, while adult GH deficiency (AGHD) is observed in adulthood. The early diagnosis of AGHD is important for early initiation of GH replacement therapy. This review described the regulatory mechanisms of GH signaling based on nutritional status and a novel disease concept pathogenesis that causes AGHD. GH-dependent IGF-1 production in the liver is regulated by a complex interplay between nutritional status, hormones, and growth factors. GH resistance is an adaptive response that enhances survival during starvation and malnutrition. Sirtuin 1 (SIRT1) negatively regulates GH-induced IGF-I production in the liver by directly inhibiting STAT5 activation, which causes GH resistance under starvation and malnutrition. The presence of autoantibodies is strongly associated with the disruption of immune tolerance in pituitary cells. Pituitary-specific transcription factors (PIT-1) are essential for the development, differentiation, and maintenance of GH, PRL, and TSH producing cells. However, the underlying mechanism that causes immune intolerance to PIT-1 remain unclear. The GH-IGF-1 system plays a pivotal role in growth, and the involvement of SIRT1 in this regulatory mechanism presents an intriguing perspective on the interplay between nutrient metabolism and lifespan. The discovery of the anti-PIT-1 pituitary antibody, a novel disease concept associated with AGHD, has provided valuable insights, which serves as a significant milestone towards unraveling the complete pathogenesis of the disease.

参考文献

1. Ho KK, O’Sullivan AJ, Burt MG (2023) The physiology

of growth hormone (GH) in adults: translational journey to

GH replacement therapy. J Endocrinol 257: e220197

2. Le Roith D (1997) Seminars in medicine of the Beth Israel

Deaconess Medical Center. Insulin-like growth factors. N

Engl J Med 336: 633–640.

3. Brooks AJ, Waters MJ (2010) The growth hormone recep‐

tor: mechanism of activation and clinical implications. Nat

Rev Endocrinol 6: 515–525.

4. LeRoith D, Holly JMP, Forbes BE (2021) Insulin-like

growth factors: ligands, binding proteins, and receptors.

Mol Metab 52: 101245.

5. Casanueva FF (1992) Physiology of growth hormone

secretion and action. Endocrinol Metab Clin North Am 21:

483–517.

6. Melmed S (2019) Pathogenesis and diagnosis of growth

hormone deficiency in adults. N Engl J Med 380: 2551–

2562.

7. Bolier M, van der Lelij AJ, Janssens GO, van den HeuvelEibrink MM, Neggers SJCMM (2023) Long term safety

of growth hormone replacement therapy in survivors of

cancer and tumors of the pituitary region. Endocr Relat

Cancer 30: e230026.

8. Bartke A, Sun LY, Longo V (2013) Somatotropic signal‐

ing: trade-offs between growth, reproductive develop‐

ment, and longevity. Physiol Rev 93: 571–598.

9. Giustina A, Mazziotti G, Canalis E (2008) Growth hor‐

mone, insulin-like growth factors, and the skeleton.

Endocr Rev 29: 535–559.

10. Yakar S, Isaksson O (2016) Regulation of skeletal growth

and mineral acquisition by the GH/IGF-1 axis: lessons

from mouse models. Growth Horm IGF Res 28: 26–42.

11. Rhoads RP, Kim JW, Leury BJ, Baumgard LH, Segoale

N, et al. (2004) Insulin increases the abundance of the

growth hormone receptor in liver and adipose tissue of

periparturient dairy cows. J Nutr 134: 1020–1027.

12. Veldhuis JD, Roemmich JN, Richmond EJ, Bowers CY

(2006) Somatotropic and gonadotropic axes linkages in

infancy, childhood, and the puberty-adult transition.

Endocr Rev 27: 101–140.

13. Thissen JP, Ketelslegers JM, Underwood LE (1994)

Nutritional regulation of the insulin-like growth factors.

Endocr Rev 15: 80–101.

14. Merimee TJ, Zapf J, Froesch ER (1982) Insulin-like

growth factors in the fed and fasted states. J Clin Endocri‐

nol Metab 55: 999–1002.

15. Savage MO, Burren CP, Rosenfeld RG (2010) The con‐

tinuum of growth hormone-IGF-I axis defects causing

short stature: diagnostic and therapeutic challenges. Clin

Endocrinol (Oxf) 72: 721–728.

16. Baxter RC, Bryson JM, Turtle JR (1980) Somatogenic

receptors of rat liver: regulation by insulin. Endocrinology

107: 1176–1181.

17. Leung KC, Doyle N, Ballesteros M, Waters MJ, Ho KK

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

(2000) Insulin regulation of human hepatic growth hor‐

mone receptors: divergent effects on biosynthesis and sur‐

face translocation. J Clin Endocrinol Metab 85: 4712–

4720.

Inagaki T, Lin VY, Goetz R, Mohammadi M,

Mangelsdorf DJ, et al. (2008) Inhibition of growth hor‐

mone signaling by the fasting-induced hormone FGF21.

Cell Metab 8: 77–83.

Guarente L, Picard F (2005) Calorie restriction—the SIR2

connection. Cell 120: 473–482.

Gillum MP, Erion DM, Shulman GI (2011) Sirtuin-1 regu‐

lation of mammalian metabolism. Trends Mol Med 17: 8–

13.

Liu Y, Dentin R, Chen D, Hedrick S, Ravnskjaer K,

et al. (2008) A fasting inducible switch modulates gluco‐

neogenesis via activator/coactivator exchange. Nature

456: 269–273.

Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM,

et al. (2005) Nutrient control of glucose homeostasis

through a complex of PGC-1alpha and SIRT1. Nature

434: 113–118.

Frescas D, Valenti L, Accili D (2005) Nuclear trapping of

the forkhead transcription factor FoxO1 via Sirt-dependent

deacetylation promotes expression of glucogenetic genes.

J Biol Chem 280: 20589–20595.

Nie Y, Erion DM, Yuan Z, Dietrich M, Shulman GI, et al.

(2009) STAT3 inhibition of gluconeogenesis is downregu‐

lated by SirT1. Nat Cell Biol 11: 492–500.

Yamamoto M, Iguchi G, Fukuoka H, Suda K, Bando H, et

al. (2013) SIRT1 regulates adaptive response of the

growth hormone—insulin-like growth factor-I axis under

fasting conditions in liver. Proc Natl Acad Sci U S A 110:

14948–14953.

Yamamoto M, Takahashi Y (2018) The essential role of

SIRT1 in hypothalamic-pituitary axis. Front Endocrinol

(Lausanne) 9: 605.

Chung TT, Monson JP (2000) Hypopituitarism. In:

Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos

G, et al. (eds) Endotext. https://www.ncbi.nlm.nih.gov/

books/NBK278989/ accessed on November 27, 2022.

Husebye ES, Anderson MS, Kämpe O (2018) Autoim‐

mune polyendocrine syndromes. N Engl J Med 378:

2543–2544.

Guo CJ, Leung PSC, Zhang W, Ma X, Gershwin ME

(2018) The immunobiology and clinical features of

type 1 autoimmune polyglandular syndrome (APS-1).

Autoimmun Rev 17: 78–85.

Falorni A, Laureti S, Santeusanio F (2002) Autoantibodies

in autoimmune polyendocrine syndrome type II. Endocri‐

nol Metab Clin North Am 31: 369–389.

Takao T, Nanamiya W, Matsumoto R, Asaba K,

Okabayashi T, et al. (2001) Antipituitary antibodies in

patients with lymphocytic hypophysitis. Horm Res 55:

288–292.

874

Yamamoto et al.

32. O’Dwyer DT, Smith AI, Matthew ML, Andronicos NM,

Ranson M, et al. (2002) Identification of the 49-kDa auto‐

antigen associated with lymphocytic hypophysitis as

alpha-enolase. J Clin Endocrinol Metab 87: 752–757.

33. Cocco C, Brancia C, Corda G, Ferri GL (2017) The

hypothalamic-pituitary axis and autoantibody related dis‐

orders. Int J Mol Sci 18: 2322.

34. Iwama S, Welt CK, Romero CJ, Radovick S, Caturegli P

(2013) Isolated prolactin deficiency associated with serum

autoantibodies against prolactin-secreting cells. J Clin

Endocrinol Metab 98: 3920–3925.

35. De Bellis A, Bellastella G, Maiorino MI, Aitella E,

Lucci E, et al. (2016) Longitudinal behavior of autoim‐

mune GH deficiency: from childhood to transition age.

Eur J Endocrinol 174: 381–387.

36. De Bellis A, Colao A, Tirelli G, Ruocco G, Di Somma C,

et al. (2008) Autoimmunity as a possible cause of growth

hormone deficiency. J Endocrinol Invest 31: 1132–1134.

37. Sauter NP, Toni R, McLaughlin CD, Dyess EM,

Kritzman J, et al. (1990) Isolated adrenocorticotropin

deficiency associated with an autoantibody to a cortico‐

troph antigen that is not adrenocorticotropin or other

proopiomelanocortin-derived peptides. J Clin Endocrinol

Metab 70: 1391–1397.

38. De Bellis A, Pane E, Bellastella G, Sinisi AA, Colella C,

et al. (2011) Detection of antipituitary and antihypothala‐

mus antibodies to investigate the role of pituitary or

hypothalamic autoimmunity in patients with selective

idiopathic hypopituitarism. Clin Endocrinol (Oxf) 75:

361–366.

39. Scully KM, Rosenfeld MG (2002) Pituitary development:

regulatory codes in mammalian organogenesis. Science

295: 2231–2235.

40. Tatsumi K, Miyai K, Notomi T, Kaibe K, Amino N, et al.

(1992) Cretinism with combined hormone deficiency

caused by a mutation in the PIT1 gene. Nat Genet 1: 56–58.

41. Takeno R, Iguchi G, Kudo T, Takahashi K, Takahashi Y,

et al. (2003) A case of a possible acquired combined pitui‐

tary hormone deficiency. Folia Endocrinologica Japonica

79 (Suppl 3): 103 (In Japanese).

42. Takeno R, Takahashi Y, Iguchi G, Honda H, Nishizawa H,

et al. (2006) Acquired hypopituitarism characterized by

GH, PRL, and TSH deficiency Combined hypopituitarism:

detection of circulating PIT1 autoantibodies. Folia Endo‐

crinologica Japonica 82: 95 (In Japanese).

43. Saito T, Tojo K, Kuriyama G, Murakawa Y, Fujimoto K,

et al. (2004) A case of acquired deficiency of pituitary

GH, PRL and TSH, associated with type 1 diabetes melli‐

tus. Endocr J 51: 287–293.

44. Yamamoto M, Iguchi G, Takeno R, Okimura Y, Sano T,

et al. (2011) Adult combined GH, prolactin, and TSH

deficiency associated with circulating PIT-1 antibody in

humans. J Clin Invest 121: 113–119.

45. Harada Y, Mokubo A (2007) A case of acquired combined

hypopituitarism. Folia Endocrinologica Japonica 83: 774

(In Japanese).

46. Kotwal A, Stan M (2018) Thyrotropin receptor antibodiesan overview. Ophthal Plast Reconstr Surg 34(4S Suppl 1):

S20–S27.

47. Evoli A, Lancaster E (2014) Paraneoplastic disorders in

thymoma patients. J Thorac Oncol 9: S143–S147.

48. Hiyama TY, Matsuda S, Fujikawa A, Matsumoto M,

Watanabe E, et al. (2010) Autoimmunity to the sodiumlevel sensor in the brain causes essential hypernatremia.

Neuron 66: 508–522.

49. Bando H, Iguchi G, Fukuoka H, Yamamoto M, HidakaTakeno R, et al. (2014) Involvement of PIT-1-reactive

cytotoxic T lymphocytes in anti-PIT-1 antibody syndrome.

J Clin Endocrinol Metab 99: E1744–E1749.

50. Bando H, Iguchi G, Okimura Y, Odake Y, Yoshida K, et

al. (2017) A novel thymoma-associated autoimmune dis‐

ease: anti-PIT-1 antibody syndrome. Sci Rep 7: 43060.

51. Berrih-Aknin S, Le Panse R (2014) Myasthenia gravis: a

comprehensive review of immune dysregulation and etio‐

logical mechanisms. J Autoimmun 52: 90–100.

52. Wadhera A, Maverakis E, Mitsiades N, Lara PN, Fung

MA, et al. (2007) Thymoma-associated multiorgan auto‐

immunity: a graft-versus-host-like disease. J Am Acad

Dermatol 57: 683–689.

53. Anderson MS, Su MA (2016) AIRE expands: new roles in

immune tolerance and beyond. Nat Rev Immunol 16: 247–

258.

54. Cron MA, Maillard S, Villegas J, Truffault F, Sudres M, et

al. (2018) Thymus involvement in early-onset myasthenia

gravis. Ann N Y Acad Sci 1412: 137–145.

55. Wang Y, Thomas A, Lau C, Rajan A, Zhu Y, et al. (2014)

Mutations of epigenetic regulatory genes are common in

thymic carcinomas. Sci Rep 4: 7336.

56. Saito M, Fujiwara Y, Asao T, Honda T, Shimada Y, et al.

(2017) The genomic and epigenomic landscape in thymic

carcinoma. Carcinogenesis 38: 1084–1091.

57. Martinez-Ordoñez A, Seoane S, Cabezas P, Eiro N,

Sendon-Lago J, et al. (2018) Breast cancer metastasis to

liver and lung is facilitated by Pit-1-CXCL12-CXCR4

axis. Oncogene 37: 1430–1444.

58. Kanie K, Bando H, Iguchi G, Muguruma K, Matsumoto

R, et al. (2019) Pathogenesis of anti-PIT-1 antibody syn‐

drome: PIT-1 presentation by HLA class I on anterior

pituitary cells. J Endocr Soc 3: 1969–1978.

59. Yamamoto M, Iguchi G, Bando H, Kanie K, HidakaTakeno R, et al. (2020) Autoimmune pituitary disease:

new concepts with clinical implications. Endocr Rev 41:

261–272.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る