リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Predicting the presence of breast cancer using circulating small RNAs, including those in the extracellular vesicles」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Predicting the presence of breast cancer using circulating small RNAs, including those in the extracellular vesicles

厚井 裕三子 広島大学

2020.05.28

概要

Breast cancer (BC) is one of the most common cancers among women worldwide (1). Although
mammography is commonly used for BC screening (2), it has hampered by the occurrence of
false-positive results, which might lead to additional imaging or tumor biopsy (3, 4). In
addition, the sensitivity of mammography is decreased in younger women or women with dense
breast tissue (5, 6). Asian women have relatively high breast density, and are at particular need
of methods for BC detection that overcome these problems (7).
Extracellular vesicles (EVs) are membranous vesicles secreted from cells to the extracellular
environment which contain nucleic acid, proteins, and lipids (8). EVs can be classified into
various types according to size and mode of biogenesis (9). Exosomes are nano-sized EVs (30150 nm) originating from the endocytic pathway (10). EVs, especially exosomes, have been
found to play essential roles in intercellular communication through their cargo. EV components
differ by releasing cell type, and have therefore been investigated as markers for disease,
including cancer. One example is EV-encapsulated small RNAs (EV small RNAs) (8).
Small RNAs consist of multiple classes of short non-coding RNA (ncRNA) molecules that
include microRNAs (miRNAs), transfer RNA fragments (tRFs), and other RNA fragments
generated from Y RNAs; miscellaneous RNAs (misc RNAs); and others. (11). ...

この論文で使われている画像

参考文献

1.

Sun YS, Zhao Z, Yang ZN, Xu F, Lu HJ, Zhu ZY, et al. Risk Factors and Preventions

of Breast Cancer. International journal of biological sciences. 2017;13(11):1387-97.

2.

Gotzsche PC, Jorgensen KJ. Screening for breast cancer with mammography. The

25

Cochrane database of systematic reviews. 2013(6):Cd001877.

3.

Baum M. Should routine screening by mammography be replaced by a more

selective service of risk assessment/risk management? Women's health (London, England).

2010;6(1):71-6.

4.

Pace LE, Keating NL. A systematic assessment of benefits and risks to guide breast

cancer screening decisions. Jama. 2014;311(13):1327-35.

5.

Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, et al. Mammographic density

and the risk and detection of breast cancer. The New England journal of medicine.

2007;356(3):227-36.

6.

Lee K, Kim H, Lee JH, Jeong H, Shin SA, Han T, et al. Retrospective observation

on contribution and limitations of screening for breast cancer with mammography in Korea:

detection rate of breast cancer and incidence rate of interval cancer of the breast. BMC

women's health. 2016;16(1):72.

7.

del Carmen MG, Halpern EF, Kopans DB, Moy B, Moore RH, Goss PE, et al.

Mammographic breast density and race. AJR American journal of roentgenology.

2007;188(4):1147-50.

8.

Li SP, Lin ZX, Jiang XY, Yu XY. Exosomal cargo-loading and synthetic exosome-

mimics as potential therapeutic tools. Acta pharmacologica Sinica. 2018;39(4):542-51.

26

9.

Fais S, O'Driscoll L, Borras FE, Buzas E, Camussi G, Cappello F, et al. Evidence-

Based Clinical Use of Nanoscale Extracellular Vesicles in Nanomedicine. ACS nano.

2016;10(4):3886-99.

10.

Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends.

The Journal of cell biology. 2013;200(4):373-83.

11.

Storz G. An expanding universe of noncoding RNAs. Science (New York, NY).

2002;296(5571):1260-3.

12.

Vickers KC, Sethupathy P, Baran-Gale J, Remaley AT. Complexity of microRNA

function and the role of isomiRs in lipid homeostasis. Journal of lipid research.

2013;54(5):1182-91.

13.

Neilsen CT, Goodall GJ, Bracken CP. IsomiRs--the overlooked repertoire in the

dynamic microRNAome. Trends in genetics : TIG. 2012;28(11):544-9.

14.

Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA.

MicroRNAs in body fluids--the mix of hormones and biomarkers. Nature reviews Clinical

oncology. 2011;8(8):467-77.

15.

Reid G, Kirschner MB, van Zandwijk N. Circulating microRNAs: Association with

disease and potential use as biomarkers. Critical reviews in oncology/hematology.

2011;80(2):193-208.

27

16.

Zaratiegui M, Irvine DV, Martienssen RA. Noncoding RNAs and gene silencing. Cell.

2007;128(4):763-76.

17.

Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell.

2009;136(2):215-33.

18.

Shen Y, Yu X, Zhu L, Li T, Yan Z, Guo J. Transfer RNA-derived fragments and tRNA

halves: biogenesis, biological functions and their roles in diseases. Journal of molecular

medicine (Berlin, Germany). 2018;96(11):1167-76.

19.

Wu W, Sun M, Zou GM, Chen J. MicroRNA and cancer: Current status and

prospective. International journal of cancer. 2007;120(5):953-60.

20.

Weiland M, Gao XH, Zhou L, Mi QS. Small RNAs have a large impact: circulating

microRNAs as biomarkers for human diseases. RNA biology. 2012;9(6):850-9.

21.

Schrauder MG, Strick R, Schulz-Wendtland R, Strissel PL, Kahmann L, Loehberg

CR, et al. Circulating micro-RNAs as potential blood-based markers for early stage breast

cancer detection. PloS one. 2012;7(1):e29770.

22.

Mishra S, Srivastava AK, Suman S, Kumar V, Shukla Y. Circulating miRNAs

revealed as surrogate molecular signatures for the early detection of breast cancer. Cancer

letters. 2015;369(1):67-75.

23.

Zhang K, Wang YW, Wang YY, Song Y, Zhu J, Si PC, et al. Identification of microRNA

28

biomarkers in the blood of breast cancer patients based on microRNA profiling. Gene.

2017;619:10-20.

24.

Jia Y, Chen Y, Wang Q, Jayasinghe U, Luo X, Wei Q, et al. Exosome: emerging

biomarker in breast cancer. Oncotarget. 2017;8(25):41717-33.

25.

Hannafon BN, Trigoso YD, Calloway CL, Zhao YD, Lum DH, Welm AL, et al. Plasma

exosome microRNAs are indicative of breast cancer. Breast cancer research : BCR.

2016;18(1):90.

26.

Kumar P, Kuscu C, Dutta A. Biogenesis and Function of Transfer RNA-Related

Fragments (tRFs). Trends in biochemical sciences. 2016;41(8):679-89.

27.

Guo L, Chen F. A challenge for miRNA: multiple isomiRs in miRNAomics. Gene.

2014;544(1):1-7.

28.

existing

Yu F, Pillman KA, Neilsen CT, Toubia J, Lawrence DM, Tsykin A, et al. Naturally

isoforms

of

miR-222

have

distinct

functions.

Nucleic

acids

research.

2017;45(19):11371-85.

29.

Dhahbi JM, Spindler SR, Atamna H, Boffelli D, Martin DI. Deep Sequencing of

Serum Small RNAs Identifies Patterns of 5' tRNA Half and YRNA Fragment Expression

Associated with Breast Cancer. Biomarkers in cancer. 2014;6:37-47.

30.

Gospodarowicz MK, Brierley JD, Wittekind C. TNM classification of malignant

29

tumours: John Wiley & Sons; 2017.

31.

Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, et al.

Recommendations for human epidermal growth factor receptor 2 testing in breast cancer:

American Society of Clinical Oncology/College of American Pathologists clinical practice

guideline update. Journal of clinical oncology : official journal of the American Society of

Clinical Oncology. 2013;31(31):3997-4013.

32.

Nakamura K, Kusama K, Bai R, Sakurai T, Isuzugawa K, Godkin JD, et al.

Induction of IFNT-Stimulated Genes by Conceptus-Derived Exosomes during the

Attachment Period. PloS one. 2016;11(6):e0158278.

33.

Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs

using deep sequencing data. Nucleic acids research. 2014;42(Database issue):D68-73.

34.

Chan PP, Lowe TM. GtRNAdb 2.0: an expanded database of transfer RNA genes

identified in complete and draft genomes. Nucleic acids research. 2016;44(D1):D184-9.

35.

Chan PP, Lowe TM. GtRNAdb: a database of transfer RNA genes detected in

genomic sequence. Nucleic acids research. 2009;37(Database issue):D93-7.

36.

Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al. Ensembl

2018. Nucleic acids research. 2018;46(D1):D754-d61.

37.

Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring

30

and therapeutics. A comprehensive review. EMBO molecular medicine. 2012;4(3):143-59.

38.

Harris L, Fritsche H, Mennel R, Norton L, Ravdin P, Taube S, et al. American

Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers

in breast cancer. Journal of clinical oncology : official journal of the American Society of

Clinical Oncology. 2007;25(33):5287-312.

39.

Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350-5.

40.

Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell.

2004;116(2):281-97.

41.

Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA

expression profiles classify human cancers. Nature. 2005;435(7043):834-8.

42.

Bartels CL, Tsongalis GJ. MicroRNAs: novel biomarkers for human cancer. Clinical

chemistry. 2009;55(4):623-31.

43.

Cloonan N, Wani S, Xu Q, Gu J, Lea K, Heater S, et al. MicroRNAs and their

isomiRs function cooperatively to target common biological pathways. Genome biology.

2011;12(12):R126.

44.

Llorens F, Banez-Coronel M, Pantano L, del Rio JA, Ferrer I, Estivill X, et al. A

highly expressed miR-101 isomiR is a functional silencing small RNA. BMC genomics.

2013;14:104.

31

45.

Salem O, Erdem N, Jung J, Munstermann E, Worner A, Wilhelm H, et al. The highly

expressed 5'isomiR of hsa-miR-140-3p contributes to the tumor-suppressive effects of miR140 by reducing breast cancer proliferation and migration. BMC genomics. 2016;17:566.

46.

Wu CW, Evans JM, Huang S, Mahoney DW, Dukek BA, Taylor WR, et al. A

Comprehensive

Approach

to

Sequence-oriented

IsomiR

annotation

(CASMIR):

demonstration with IsomiR profiling in colorectal neoplasia. BMC genomics. 2018;19(1):401.

47.

Feng YH, Tsao CJ. Emerging role of microRNA-21 in cancer. Biomedical reports.

2016;5(4):395-402.

48.

Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, et al. MicroRNA miR-21

overexpression in human breast cancer is associated with advanced clinical stage, lymph

node metastasis and patient poor prognosis. RNA (New York, NY). 2008;14(11):2348-60.

49.

Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA

expression signature of human solid tumors defines cancer gene targets. Proceedings of the

National Academy of Sciences of the United States of America. 2006;103(7):2257-61.

50.

Eissa S, Matboli M, Shehata HH. Breast tissue-based microRNA panel highlights

microRNA-23a and selected target genes as putative biomarkers for breast cancer.

Translational research : the journal of laboratory and clinical medicine. 2015;165(3):417-27.

51.

Li X, Liu X, Xu W, Zhou P, Gao P, Jiang S, et al. c-MYC-regulated miR-23a/24-2/27a

32

cluster promotes mammary carcinoma cell invasion and hepatic metastasis by targeting

Sprouty2. The Journal of biological chemistry. 2013;288(25):18121-33.

52.

Anderson P, Ivanov P. tRNA fragments in human health and disease. FEBS letters.

2014;588(23):4297-304.

53.

Olvedy M, Scaravilli M, Hoogstrate Y, Visakorpi T, Jenster G, Martens-Uzunova ES.

A comprehensive repertoire of tRNA-derived fragments in prostate cancer. Oncotarget.

2016;7(17):24766-77.

54.

Lee YS, Shibata Y, Malhotra A, Dutta A. A novel class of small RNAs: tRNA-derived

RNA fragments (tRFs). Genes & development. 2009;23(22):2639-49.

55.

Endzelins E, Berger A, Melne V, Bajo-Santos C, Sobolevska K, Abols A, et al.

Detection of circulating miRNAs: comparative analysis of extracellular vesicle-incorporated

miRNAs and cell-free miRNAs in whole plasma of prostate cancer patients. BMC cancer.

2017;17(1):730.

56.

Yanez-Mo M, Siljander PR, Andreu Z, Zavec AB, Borras FE, Buzas EI, et al.

Biological properties of extracellular vesicles and their physiological functions. Journal of

extracellular vesicles. 2015;4:27066.

57.

Soung YH, Nguyen T, Cao H, Lee J, Chung J. Emerging roles of exosomes in cancer

invasion and metastasis. BMB reports. 2016;49(1):18-25.

33

58.

Melo SA, Sugimoto H, O'Connell JT, Kato N, Villanueva A, Vidal A, et al. Cancer

exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis.

Cancer cell. 2014;26(5):707-21.

59.

Chevillet JR, Kang Q, Ruf IK, Briggs HA, Vojtech LN, Hughes SM, et al.

Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proceedings

of the National Academy of Sciences of the United States of America. 2014;111(41):14888-93.

60.

Doyle LM, Wang MZ. Overview of Extracellular Vesicles, Their Origin, Composition,

Purpose, and Methods for Exosome Isolation and Analysis. Cells. 2019;8(7).

34

Figure Legends

Figure 1. Schematic overview of the study.

Figure 2. Comparison of normalized reads of 3 significantly upregulated small RNAs in the

validation cohort (*p < 0.01).

Figure 3. Comparison of IsomiR abundance in serum from BC patients (n=78) and cancer-free

individuals (n=72). The 5 most abundant forms of miRNA are presented in the Y axis. miR-215p (A), miR-23a-3p (B).

Figure 4. Diagnostic utility of 3 small RNAs for BC detection. Receiver operating characteristic

curve analysis (A), relative levels using small RNAs in BC patients and cancer-free individuals

(N) by BC stage (*p < 0.01) (B), relative levels using small RNAs in BC patients and N by BC

subtype (*p < 0.01) (C), relative levels using small RNAs in BC patients by IHC analysis in

patients with invasive BC (D), and comparison of diagnostic values among serum markers CEA

and CA15-3, and our constructed model (E).

Figure 5. Characterization of EVs isolated with an exosome isolation kit. TEM analysis of EVs

(A). Western blot analysis of exosomal markers CD9 and TSG101 (B). Contribution of

nanoparticles of EVs (C), and total concentration of each EV (D). ApoB as a marker of

lipoproteins by western blotting (E).

Figure 6. Expression of identified small RNAs in EVs derived from serum of 32 BC patients and

35

20 cancer-free individuals (N), and from cell culture media of 184-h TERT, MCF7, and MDAMB-231 (*p < 0.01).

7DEOHV DQG )LJXUHV

Table 1. Clinicopathological characteristics of participants.

Table 2. Significantly upregulated small RNAs in the serum of BC group compared to N group in both screening and validation phase.

Table 3. Diagnostic accuracy, sensitivity, and specificity for discriminating BC patients from cancer-free individuals.

Figure 1. Schematic overview of the study.

Figure 2. Comparison of normalized reads of 3 significantly upregulated small RNAs in validation cohort (*p < 0.01).

Figure 3. IsomiR abundance in serum compared between BC patients (n=78) and cancer-free individuals (n=72).

The 5 most abundant forms of miRNAs are presented in Y axis.

Figure 4. Diagnostic utility of 3 small RNAs for BC detection. Receiver operating characteristic curve analysis (A), relative levels

using small RNAs in BC patients and cancer-free individuals (N) by BC stage (*p < 0.01) (B), relative levels using small RNAs in BC

patients and N by BC subtype (*p < 0.01) (C)

Figure 4. Diagnostic utility of 3 small RNAs for BC detection. relative levels using small RNAs in BC patients by IHC analysis in

patients with invasive BC (D), and comparison of diagnostic values among serum markers CEA and CA15-3, and our constructed

model (E).

Figure 5. Characterization of EVs isolated with an exosome isolation kit. TEM analysis of EVs (A). Western blot analysis of exosomal

markers CD9 and TSG101 (B). Contribution of nanoparticles of EVs (C), and total concentration of each EV (D). ApoB as a marker of

lipoproteins by western blotting (E).

Figure 6. Expression of identified small RNAs in EVs derived from serum of 32 BC patients and 20 cancer-free individuals (N), and

from cell culture media of 184-h TERT, MCF7, and MDA-MB-231 (*p < 0.001, **p < 0.01).

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る