リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「High-throughput analysis of anthocyanins in horticultural crops using probe electrospray ionization tandem mass spectrometry (PESI/MS/MS)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

High-throughput analysis of anthocyanins in horticultural crops using probe electrospray ionization tandem mass spectrometry (PESI/MS/MS)

Ishibashi, Misaki Zaitsu, Kei Yoshikawa, Ikue Otagaki, Shungo Matsumoto, Shogo Oikawa, Akira Shiratake, Katsuhiro 京都大学 DOI:10.1093/hr/uhad039

2023.04

概要

Plant secondary metabolites exhibit various horticultural traits. Simple and rapid analysis methods for evaluating these metabolites are in demand in breeding and consumer markets dealing with horticultural crops. We applied probe electrospray ionization (PESI) to evaluate secondary metabolite levels in horticultural crops. PESI does not require pre-treatment and separation of samples, which makes it suitable for high-throughput analysis. In this study, we targeted anthocyanins, one of the primary pigments in horticultural crops. Eighty-one anthocyanins were detected in approximately 3 minutes in the selected reaction-monitoring mode. Tandem mass spectrometry (MS/MS) could adequately distinguish between the fragments of anthocyanins and flavonols. Probe sampling, an intuitive method of sticking a probe directly to the sample, could detect anthocyanins qualitatively on a micro-area scale, such as achenes and receptacles in strawberry fruit. Our results suggest that PESI/MS/MS can be a powerful tool to characterize the profile of anthocyanins and compare their content among cultivars.

この論文で使われている画像

参考文献

1. Yahia EM, Carrillo-López A. Postharvest physiology and biochemistry of fruits and vegetables. Elsevier. 2018;1:1–476.

2. Bueno JM, Sáez-Plaza P, Ramos-Escudero F et al. Analysis and

antioxidant capacity of anthocyanin pigments. Part II: chemical

structure, color, and intake of anthocyanins. Crit Rev Anal Chem.

2012;42:126–51.

3. Kortbeek RWJ, van der Gragt M, Bleeker PM. Endogenous plant

metabolites against insects. Eur J Plant Pathol. 2019;154:67–90.

4. Wu X, Prior RL. Systematic identification and characterization

of anthocyanins by HPLC-ESI-MS/MS in common foods in the

United States: fruits and berries. J Agric Food Chem. 2005;53:

2589–99.

5. Kruger MJ, Davies N, Myburgh KH et al. Proanthocyanidins,

anthocyanins and cardiovascular diseases. Food Res Int. 2014;59:

41–52.

6. de Arruda NE, de Lima CL, da Silva CJ et al. In vitro anticancer

properties of anthocyanins: a systematic review. Biochim Biophys

Acta - Rev Cancer. 2022;1877:188748(15 pages).

7. Wu X, Prior RL. Identification and characterization of

anthocyanins by high-performance liquid chromatographyelectrospray ionization-tandem mass spectrometry in common

foods in the United States: vegetables, nuts, and grains. J Agric

Food Chem. 2005;53:3101–13.

8. Mikulic-petkovsek M, Slatnar A, Stampar F et al. HPLC–MSn

identification and quantification of flavonol glycosides in 28

wild and cultivated berry species. Food Chem. 2012;135:2138–46.

9. Cooks RG, Ouyang Z, Takats Z et al. Ambient mass spectrometry.

Science. 2006;311:1566–70.

10. Guo T, Yong W, Jin Y et al. Applications of DART-MS for food

quality and safety assurance in food supply chain. Mass Spectrom

Rev. 2017;36:161–87.

11. Mason TJ, Bettenhausen HM, Chaparro JM et al. Evaluation

of ambient mass spectrometry tools for assessing inherent

postharvest pepper quality. Hortic Res. 2021;8:160.

Downloaded from https://academic.oup.com/hr/article/10/4/uhad039/7060411 by Kyoto Daigaku Bungakubu Toshokan user on 19 April 2023

chloride, delphinidin 3-glucoside chloride, and delphinidin 3rutinoside chloride), Extrasynthese (Lyon, France; pelargonidin3-O-glucoside chloride, pelargonidin-3-O-rutinoside chloride, and

cyanidin-3,5-di-O-glucoside chloride), TOKIWA Phytochemical

Co., Ltd. (Chiba, Japan: delphinidin 3-arabinoside, malvidin 3glucoside chloride, peonidin 3-glucoside chloride, and petunidin

3-glucoside chloride), Santa Cruz Biotechnology Inc. (Heidelberg, Germany; kaempferol-3-glucoside), Sigma-Aldrich (Saint

Louis, MO, USA; apigenin 7-glucoside and quercetin 3-β-Dglucoside), and ChemFaces Biochemical Co., Ltd. (Hubei, China;

isorhamnetin-3-O-β-D-glucoside and chrysoeriol-7-O-glucoside).

Solid reagents were dissolved in 99 or 50% (v/v) ethanol and stored

at −80◦ C until use. The stock solutions were diluted with 50% (v/v)

ethanol (1–100 ppm) and used for optimizing conditions.

10

Horticulture Research, 2023, 10: uhad039

28. Arvaniti OS, Samaras Y, Gatidou G et al. Review on fresh and

dried figs: chemical analysis and occurrence of phytochemical

compounds, antioxidant capacity and health effects. Food Res Int.

2019;119:244–67.

29. Jurikova T, Rop O, Mlcek J et al. Phenolic profile of edible

honeysuckle berries (genus Lonicera) and their biological effects.

Molecules. 2012;17:61–79.

30. Wang Y, Fong SK, Singh AP et al. Variation of anthocyanins,

proanthocyanidins, flavonols, and organic acids in cultivated

and wild diploid blueberry species. HortScience. 2019;54:576–85.

31. Oh YS, Lee JH, Yoon SH et al. Characterization and quantification

of anthocyanins in grape juices obtained from the grapes cultivated in Korea by HPLC/DAD, HPLC/MS, and HPLC/MS/MS. J Food

Sci. 2008;73:C378–89.

32. Blackhall ML, Berry R, Davies NW et al. Optimized extraction of

anthocyanins from Reid fruits’ Prunus avium ‘Lapins’ cherries.

Food Chem. 2018;256:280–5.

33. Lopes da Silva F, Escribano-Bailón MT, Alonso JJP et al. Anthocyanin pigments in strawberry. LWT - Food Sci Technol. 2007;40:

374–82.

34. Buendía B, Gil MI, Tudela JA et al. HPLC-MS analysis of proanthocyanidin oligomers and other phenolics in 15 strawberry

cultivars. J Agric Food Chem. 2010;58:3916–26.

35. Wiczkowski W, Szawara-Nowak D, Topolska J. Red cabbage

anthocyanins: profile, isolation, identification, and antioxidant

activity. Food Res Int. 2013;51:303–9.

36. Viacava GE, Roura SI, Berrueta LA et al. Characterization of

phenolic compounds in green and red oak-leaf lettuce cultivars

by UHPLC-DAD-ESI-QToF/MS using MSE scan mode. J Mass Spectrom. 2017;52:873–902.

37. Pérez-Gregorio RM, García-Falcón MS, Simal-Gándara J et al.

Identification and quantification of flavonoids in traditional

cultivars of red and white onions at harvest. J Food Compos Anal.

2010;23:592–8.

38. Zielinska

D, Turemko M. Electroactive phenolic contributors

and antioxidant capacity of flesh and peel of 11 apple cultivars measured by cyclic voltammetry and HPLC–DAD–MS/MS.

Antioxidants. 2020;9:1–18.

39. Enomoto H, Sato K, Miyamoto K et al. Distribution analysis of

anthocyanins, sugars, and organic acids in strawberry fruits

using matrix-assisted laser desorption/ionization-imaging mass

spectrometry. J Agric Food Chem. 2018;66:4958–65.

40. Wang J, Yang E, Chaurand P et al. Visualizing the distribution of strawberry plant metabolites at different maturity

stages by MALDI-TOF imaging mass spectrometry. Food Chem.

2021;345:128838(9 pages).

41. Fait A, Hanhineva K, Beleggia R et al. Reconfiguration of the

achene and receptacle metabolic networks during strawberry

fruit development. Plant Physiol. 2008;148:730–50.

42. Usmanov DT, Mandal MK, Hiraoka K et al. Dipping probe electrospray ionization/mass spectrometry for direct on-site and lowinvasive food analysis. Food Chem. 2018;260:53–60.

43. Hiraoka K, Rankin-Turner S, Ninomiya S et al. Component profiling in agricultural applications using an adjustable acupuncture needle for sheath-flow probe electrospray ionization/mass

spectrometry. J Agric Food Chem. 2019;67:3275–83.

44. Ishibashi M, Okochi S, Sone K et al. Seasonal variation of the

major allergen Fra a 1 in strawberry fruit. Hortic J. 2019;88:

354–63.

45. Matsuo T, Tsugawa H, Miyagawa H et al. Integrated strategy for

unknown EI-MS identification using quality control calibration

curve, multivariate analysis, EI-MS spectral database, and retention index prediction. Anal Chem. 2017;89:6766–73.

Downloaded from https://academic.oup.com/hr/article/10/4/uhad039/7060411 by Kyoto Daigaku Bungakubu Toshokan user on 19 April 2023

12. Cabral EC, Mirabelli MF, Perez CJ et al. Blotting assisted by

heating and solvent extraction for DESI-MS imaging. J Am Soc

Mass Spectrom. 2013;24:956–65.

13. Moreno-Pedraza A, Rosas-Román I, Garcia-Rojas NS et al. Elucidating the distribution of plant metabolites from native tissues

with laser desorption low-temperature plasma mass spectrometry imaging. Anal Chem. 2019;91:2734–43.

14. McVey PA, Alexander LE, Fu X et al. Light-dependent changes in

the spatial localization of metabolites in solenostemon scutellarioides (coleus henna) visualized by matrix-free atmospheric pressure electrospray laser desorption ionization mass spectrometry

imaging. Front Plant Sci. 2018;9:1348.

15. Liu Q, Lan J, Wu R et al. Hybrid ionization source combining

nanoelectrospray and dielectric barrier discharge ionization for

the simultaneous detection of polar and nonpolar compounds

in single cells. Anal Chem. 2022;94:2873–81.

16. Hiraoka K, Nishidate K, Mori K et al. Development of probe

electrospray using a solid needle. Rapid Commun Mass Spectrom.

2007;21:3139–44.

17. Hiraoka K, Ariyada O, Usmanov DT et al. Probe electrospray

ionization (PESI) and its modified versions: dipping PESI (dPESI),

sheath-flow PESI (sfPESI) and adjustable sfPESI (ad-sfPESI). Mass

Spectrom (Tokyo). 2020;9:A0092–21.

18. Zaitsu K, Hayashi Y, Murata T et al. Intact endogenous metabolite analysis of mice liver by probe electrospray ionization/triple

quadrupole tandem mass spectrometry and its preliminary

application to in vivo real-time analysis. Anal Chem. 2016;88:

3556–61.

19. Mandal MK, Chen LC, Hiraoka K. Sequential and exhaustive ionization of analytes with different surface activity by

probe electrospray ionization. J Am Soc Mass Spectrom. 2011;22:

1493–500.

20. Hu B, Yao ZP. Electrospray ionization mass spectrometry

with wooden tips: a review. Anal Chim Acta. 2022;1209:339136

(10 pages).

21. Freund DM, Martin AC, Cohen JD et al. Direct detection of surface localized specialized metabolites from Glycyrrhiza lepidota

(American licorice) by leaf spray mass spectrometry. Planta.

2018;247:267–75.

22. Zaitsu K, Eguchi S, Ohara T et al. PiTMaP: a new analytical platform for high-throughput direct metabolome analysis

by probe electrospray ionization/tandem mass spectrometry

using an R software-based data pipeline. Anal Chem. 2020;92:

8514–22.

23. Hisatsune K, Murata T, Ogata K et al. RECiQ: a rapid and easy

method for determining cyanide intoxication by cyanide and 2aminothiazoline-4-carboxylic acid quantification in the human

blood using probe electrospray ionization tandem mass spectrometry. ACS Omega. 2020;5:23351–7.

24. Kawakami D, Tsuchiya M, Murata T et al. Rapid quantification of

extracellular neurotransmitters in mouse brain by PESI/MS/MS

and longitudinal data analysis using the R and Stan-based

Bayesian state-space model. Talanta. 2021;234:122620(9 pages).

25. Thirukumaran M, Singh V, Arao Y et al. Solid-phase

microextraction- probe electrospray ionization devices for

screening and quantitating drugs of abuse in small amounts of

biofluids. Talanta. 2021;231:122317(8 pages).

26. Zhao D, Tao J. Recent advances on the development and regulation of flower color in ornamental plants. Front Plant Sci. 2015;6:

1–13.

27. Horai H, Arita M, Kanaya S et al. MassBank: a public repository

for sharing mass spectral data for life sciences. J Mass Spectrom.

2010;45:703–14.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る