リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Comprehensive Analysis of mRNA in Extracellular Vesicles Secreted from Motor Neurons and Its Application to Discovery of Disease-Related Biomarkers」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Comprehensive Analysis of mRNA in Extracellular Vesicles Secreted from Motor Neurons and Its Application to Discovery of Disease-Related Biomarkers

大竹, 健太郎 筑波大学 DOI:10.15068/0002008133

2023.09.04

概要

EVs contain the molecular features of RNAs and proteins from their parental cells. EVs,
including exosomes, are thus expected to be suitable surrogates of their origin cells in
liquid biopsy to measure biomarkers. Several studies have qualitatively compared the
cargo molecules between parental cells and their EVs. However, quantitative comparisons
remain to be reported to date. In addition, many studies have focused on miRNAs or
proteins in EV, but not on mRNAs. In this study, I focused on the mRNAs of motor
neurons and their EVs. Normal healthy human induced pluripotent stem cells (iPSCs)
were differentiated into motor neurons, and a comprehensive analysis of mRNAs in the
cells and in their EVs was performed using RNA-seq. Statistically differential analysis
between cellular and EV mRNAs was performed using the R-implemented package
edgeR after normalization of raw read counts. The results suggested that the mRNA
abundance signatures in the EVs were different from those in the parental cells.
Comparison of the relative abundance of mRNAs between cells and their EVs showed
negatively and positively biased genes in the EV. ...

この論文で使われている画像

参考文献

1.

Angélique Bobrie, et al., “Exosome secretion: molecular mechanisms and roles in

immune responses”, Traffic. 2011 Dec;12(12):1659-68.

2.

Michael G Harrington, et al., “The morphology and biochemistry of nanostructures

provide evidence for synthesis and signaling functions in human cerebrospinal fluid”,

Cerebrospinal Fluid Res. 2009 Sep 7;6:10.

3.

Jan Lötvall, et al., “Minimal experimental requirements for definition of extracellular

vesicles and their functions: a position statement from the International Society for

Extracellular Vesicles”, J Extracell Vesicles. 2014 Dec 22;3:26913.

4.

Joanna Kowal, et al., “Biogenesis and secretion of exosomes”, Curr Opin Cell Biol.

2014 Aug;29:116-25.

5.

Ariel Savina, et al., “The exosome pathway in K562 cells is regulated by Rab11”, J

Cell Sci. 2002 Jun 15;115(Pt 12):2505-15.

6.

Bin-Tao Pan, et al., “Fate of the transferrin receptor during maturation of sheep

reticulocytes in vitro: selective externalization of the receptor”, Cell. 1983

Jul;33(3):967-78.

7.

Rose M Johnstone, et al., “Vesicle formation during reticulocyte maturation.

Association of plasma membrane activities with released vesicles (exosomes)”, J

95

Biol Chem. 1987 Jul 5;262(19):9412-20.

8.

Hadi Valadi, et al., “Exosome-mediated transfer of mRNAs and microRNAs is a

novel mechanism of genetic exchange between cells”, Nat Cell Biol. 2007

Jun;9(6):654-9.

9.

Lillian Kuo, et al., “ARRDC1 as a mediator of microvesicle budding”, Proc Natl

Acad Sci U S A. 2012 Mar 13;109(11):4025-6.

10. Graça Raposo, et al., “Extracellular vesicles: exosomes, microvesicles, and friends”,

J Cell Biol. 2013 Feb 18;200(4):373-83.

11. Clotilde Théry, et al., “Proteomic analysis of dendritic cell-derived exosomes: a

secreted subcellular compartment distinct from apoptotic vesicles”, J Immunol. 2001

Jun 15;166(12):7309-18.

12. Clotilde Théry, et al., “Minimal information for studies of extracellular vesicles 2018

(MISEV2018): a position statement of the International Society for Extracellular

Vesicles and update of the MISEV2014 guidelines”, J Extracell Vesicles. 2018 Nov

23;7(1):1535750.

13. Biomarkers Definitions Working Group., “Biomarkers and surrogate endpoints:

preferred definitions and conceptual framework”, Clin Pharmacol Ther. 2001

Mar;69(3):89-95.

96

14. Elena Castellanos-Rizaldos, et al., “Exosome-based detection of activating and

resistance EGFR mutations from plasma of non-small cell lung cancer patients”,

Oncotarget. 2019 Apr 23;10(30):2911-2920.

15. James McKiernan, et al., “A Novel Urine Exosome Gene Expression Assay to Predict

High-grade Prostate Cancer at Initial Biopsy”, JAMA Oncol. 2016 Jul 1;2(7):882-9.

16. Erik Margolis, et al., “Predicting high-grade prostate cancer at initial biopsy: clinical

performance of the ExoDx (EPI) Prostate Intelliscore test in three independent

prospective studies”, Prostate Cancer Prostatic Dis. 2022 Feb;25(2):296-301.

17. Berislav V Zlokovic, et al., “The blood-brain barrier in health and chronic

neurodegenerative disorders”, Neuron. 2008 Jan 24;57(2):178-201.

18. Davide Chiasserini, et al., “Proteomic analysis of cerebrospinal fluid extracellular

vesicles: a comprehensive dataset”, J Proteomics. 2014 Jun 25;106:191-204.

19. Hirohide Asai, et al., “Depletion of microglia and inhibition of exosome synthesis

halt tau propagation”, Nat Neurosci. 2015 Nov;18(11):1584-93.

20. Anne Stuendl, et al., “Induction of α-synuclein aggregate formation by CSF

exosomes from patients with Parkinson's disease and dementia with Lewy bodies”,

Brain. 2016 Feb;139(Pt 2):481-94.

21. Yohei Iguchi, et al., “Exosome secretion is a key pathway for clearance of

97

pathological TDP-43”, Brain. 2016 Dec;139(Pt 12):3187-3201.

22. Xuebing Ding, et al., “Exposure to ALS-FTD-CSF generates TDP-43 aggregates in

glioblastoma cells through exosomes and TNTs-like structure.”, Oncotarget. 2015

Sep 15;6(27):24178-91.

23. Saeed Sadigh-Eteghad, et al., “Amyloid-beta: a crucial factor in Alzheimer's disease”,

Med Princ Pract. 2015;24(1):1-10.

24. Alejandra del C. Alonso, et al., “Hyperphosphorylation induces self-assembly of tau

into tangles of paired helical filaments/straight filaments”, Proc Natl Acad Sci U S A.

2001 Jun 5;98(12):6923-8.

25. Maria Grazia Spillantini, et al., “Alpha-synuclein in Lewy bodies”, Nature. 1997 Aug

28;388(6645):839-40.

26. P. Nigel Leigh, et al., “Ubiquitin-immunoreactive intraneuronal inclusions in

amyotrophic lateral sclerosis. Morphology, distribution, and specificity”, Brain. 1991

Apr;114 ( Pt 2):775-88.

27. Tetsuaki Arai, et al., “TDP-43 is a component of ubiquitin-positive tau-negative

inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis”,

Biochem Biophys Res Commun. 2006 Dec 22;351(3):602-11.

28. Masato Hasegawa, et al., “Phosphorylated TDP-43 in frontotemporal lobar

98

degeneration and amyotrophic lateral sclerosis”, Ann Neurol. 2008 Jul;64(1):60-70.

29. Carolina Villarroya-Beltri, et al., “miRNAs into exosomes through binding to

specific motifs”, Nat Commun. 2013;4:2980.

30. Daniel Enderle, et al., “Characterization of RNA from Exosomes and Other

Extracellular Vesicles Isolated by a Novel Spin Column-Based Method”, PLoS One.

2015 Aug 28;10(8):e0136133.

31. Rup Tandan, et al., “Amyotrophic lateral sclerosis: Part 1. Clinical features,

pathology, and ethical issues in management”, Ann Neurol. 1985 Sep;18(3):271-80.

32. Vivek Majumder, et al., “TDP-43 as a potential biomarker for amyotrophic lateral

sclerosis: a systematic review and meta-analysis”, BMC Neurol. 2018 Jun

28;18(1):90.

33. Naoki Suzuki, et al., “Genetics of amyotrophic lateral sclerosis: seeking therapeutic

targets in the era of gene therapy”, J Hum Genet. 2022 Jun 13.

34. Yukio Kawahara, et al., “TDP-43 promotes microRNA biogenesis as a component of

the Drosha and Dicer complexes”, Proc Natl Acad Sci U S A. 2012 Feb

28;109(9):3347-52.

35. Axel Freischmidt, et al., “Systemic dysregulation of TDP-43 binding microRNAs in

amyotrophic lateral sclerosis”, Acta Neuropathol Commun. 2013 Jul 30;1:42.

99

36. Michele Benigni, et al., “Identification of miRNAs as Potential Biomarkers in

Cerebrospinal Fluid from Amyotrophic Lateral Sclerosis Patients”, Neuromolecular

Med. 2016 Dec;18(4):551-560.

37. Rachel Waller, et al., “Small RNA Sequencing of Sporadic Amyotrophic Lateral

Sclerosis Cerebrospinal Fluid Reveals Differentially Expressed miRNAs Related to

Neural and Glial Activity”, Front Neurosci. 2018 Jan 9;11:731.

38. Mercedes Prudencio, et al., “Distinct brain transcriptome profiles in C9orf72associated and sporadic ALS”, Nat Neurosci. 2015 Aug;18(8):1175-82.

39. Kent Imaizumi, et al., “Pathogenic Mutation of TDP-43 Impairs RNA Processing in

a Cell Type-Specific Manner: Implications for the Pathogenesis of ALS/FTLD”,

eNeuro. 2022 Jun 8;9(3):ENEURO.0061-22.2022.

40. Kazutoshi Takahashi, et al., “Induction of pluripotent stem cells from adult human

fibroblasts by defined factors”, Cell. 2007 Nov 30;131(5):861-72.

41. Stuart M Chambers, et al., “Highly efficient neural conversion of human ES and iPS

cells by dual inhibition of SMAD signaling”, Nat Biotechnol. 2009 Mar;27(3):27580.

42. Jing Li, et al., “Identification and Characterization of 293T Cell-Derived Exosomes

by Profiling the Protein, mRNA and MicroRNA Components”, PLoS One. 2016 Sep

100

20;11(9):e0163043.

43. Ana Jovičić, et al., “Distinct repertoires of microRNAs present in mouse astrocytes

compared to astrocyte-secreted exosomes”, PLoS One. 2017 Feb 2;12(2):e0171418.

44. Zhong-Wei Du, et al., “Generation and expansion of highly pure motor neuron

progenitors from human pluripotent stem cells”, Nat Commun. 2015 Mar 25;6:6626.

45. Daisuke Shimojo, et al., “Rapid, efficient, and simple motor neuron differentiation

from human pluripotent stem cells”, Mol Brain. 2015 Dec 1;8(1):79.

46. Balendu Shekhar Jha, et al., “Motor neuron differentiation from pluripotent stem

cells and other intermediate proliferative precursors that can be discriminated by

lineage specific reporters”, Stem Cell Rev Rep. 2015 Feb;11(1):194-204.

47. Neeta Singh Roy, et al., “Enhancer-specified GFP-based FACS purification of human

spinal motor neurons from embryonic stem cells”, Exp Neurol. 2005

Dec;196(2):224-34.

48. Takahiro Nakano, et al., “Identification of a conserved 125 base-pair Hb9 enhancer

that specifies gene expression to spinal motor neurons”, Dev Biol. 2005 Jul

15;283(2):474-85.

49. Mark D Robinson, et al., “edgeR: a Bioconductor package for differential expression

analysis of digital gene expression data”, Bioinformatics. 2010 Jan 1;26(1):139-40.

101

50. R Core Team (2021). R: A language and environment for statistical computing. R

Foundation for Statistical Computing, Vienna, Austria. URL https://www.Rproject.org/.

51. Revelle, W. (2022) psych: Procedures for Personality and Psychological Research,

Northwestern

University,

Evanston,

Illinois,

USA,

https://CRAN.R-

project.org/package=psych Version = 2.2.5.

52. Yoshimitsu Kanai, et al., “KIF5C, a novel neuronal kinesin enriched in motor

neurons”, J Neurosci. 2000 Sep 1;20(17):6374-84.

53. Brandi N Davis-Dusenbery, et al., “How to make spinal motor neurons”,

Development. 2014 Feb;141(3):491-501.

54. Darya D Yanshina, et al., “Structural features of the interaction of the 3'-untranslated

region of mRNA containing exosomal RNA-specific motifs with YB-1, a potential

mediator of mRNA sorting”, Biochimie. 2018 Jan;144:134-143.

55. Oswald Steward, et al., “Protein synthesis at synaptic sites on dendrites”, Annu Rev

Neurosci. 2001;24:299-325.

56. Fatih Arslan, et al., “Mesenchymal stem cell-derived exosomes increase ATP levels,

decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial

viability and prevent adverse remodeling after myocardial ischemia/reperfusion

102

injury”, Stem Cell Res. 2013 May;10(3):301-12.

57. Qinyu Ge, et al., “miRNA in plasma exosome is stable under different storage

conditions”, Molecules. 2014 Jan 27;19(2):1568-75.

58. Viswanathan Palanisamy, et al., “Nanostructural and transcriptomic analyses of

human saliva derived exosomes”, PLoS One. 2010 Jan 5;5(1):e8577.

59. Nobuyoshi Kosaka, et al., “Circulating microRNA in body fluid: a new potential

biomarker for cancer diagnosis and prognosis”, Cancer Sci. 2010 Oct;101(10):208792.

60. Hiroshi Mitsumoto, et al., “Clinical trials in amyotrophic lateral sclerosis: why so

many negative trials and how can trials be improved?”, Lancet Neurol. 2014

Nov;13(11):1127-1138.

61. Michael Benatar, et al., “ALS biomarkers for therapy development: State of the field

and future directions”, Muscle Nerve. 2016 Feb;53(2):169-82.

62. Thierry S Reijn, et al., “CSF neurofilament protein analysis in the differential

diagnosis of ALS”, J Neurol. 2009 Apr;256(4):615-9.

63. Koen Poesen, et al., “Neurofilament markers for ALS correlate with extent of upper

and lower motor neuron disease”, Neurology. 2017 Jun 13;88(24):2302-2309.

64. Osamu Kano, et al., “Neuronal apoptosis inhibitory protein is implicated in

103

amyotrophic lateral sclerosis symptoms”, Sci Rep. 2018 Jan 8;8(1):6.

65. David P Bartel, “MicroRNAs: genomics, biogenesis, mechanism, and function”, Cell.

2004 Jan 23;116(2):281-97.

66. Hanbo Chen (2022), VennDiagram: Generate High-Resolution Venn and Euler Plots.

R package version 1.7.3., https://CRAN.R-project.org/package=VennDiagram

67. Simone Picelli, et al., “Smart-seq2 for sensitive full-length transcriptome profiling in

single cells”, Nat Methods. 2013 Nov;10(11):1096-8.

68. Christine M Clemson, et al., “An architectural role for a nuclear noncoding RNA:

NEAT1 RNA is essential for the structure of paraspeckles”, Mol Cell. 2009 Mar

27;33(6):717-26.

69. Ping Ji, et al., “MALAT-1, a novel noncoding RNA, and thymosin beta4 predict

metastasis and survival in early-stage non-small cell lung cancer”, Oncogene. 2003

Sep 11;22(39):8031-41.

70. Pei-Jing Zhang, et al., “CUE domain containing 2 regulates degradation of

progesterone receptor by ubiquitin-proteasome”, EMBO J. 2007 Apr 4;26(7):183142.

71. Wei-Na Zhang, et al., “CUEDC2 (CUE domain-containing 2) and SOCS3

(suppressors of cytokine signaling 3) cooperate to negatively regulate Janus kinase

104

1/signal transducers and activators of transcription 3 signaling”, J Biol Chem. 2012

Jan 2;287(1):382-392.

72. Davina J Hensman Moss, et al., “C9orf72 expansions are the most common genetic

cause of Huntington disease phenocopies”, Neurology. 2014 Jan 28;82(4):292-9.

73. Yohsuke Yagi, et al., “Next-generation sequencing-based small RNA profiling of

cerebrospinal fluid exosomes”, Neurosci Lett. 2017 Jan 1;636:48-57.

74. Gaelle Lachenal, et al., “Release of exosomes from differentiated neurons and its

regulation by synaptic glutamatergic activity”, Mol Cell Neurosci. 2011

Feb;46(2):409-18.

75. Tsuyoshi Sekizawa, et al., “Cerebrospinal fluid interleukin 6 in amyotrophic lateral

sclerosis: immunological parameter and comparison with inflammatory and noninflammatory central nervous system diseases”, J Neurol Sci. 1998 Feb

5;154(2):194-9.

76. Jee-Eun Kim, et al., “Altered nucleocytoplasmic proteome and transcriptome

distributions in an in vitro model of amyotrophic lateral sclerosis”, PLoS One. 2017

Apr 28;12(4):e0176462.

77. Dohoon Kim, et al., “SIRT1 deacetylase protects against neurodegeneration in

models for Alzheimer's disease and amyotrophic lateral sclerosis”, EMBO J. 2007

105

Jul 11;26(13):3169-79.

78. Ekene Anakor, et al., “The Neurotoxicity of Vesicles Secreted by ALS Patient

Myotubes Is Specific to Exosome-Like and Not Larger Subtypes”, Cells. 2022 Mar

1;11(5):845.

79. Zhifen Yang, et al., “USP18 negatively regulates NF-κB signaling by targeting TAK1

and NEMO for deubiquitination through distinct mechanisms”, Sci Rep. 2015 Aug

4;5:12738.

80. Nadine Honke, et al., “Multiple functions of USP18”, Cell Death Dis. 2016 Nov

3;7(11):e2444.

81. Ji An Kang, et al., “Emerging Roles of USP18: From Biology to Pathophysiology”,

Int J Mol Sci. 2020 Sep 17;21(18):6825.

82. Srikanth Karnati, et al., “Mammalian SOD2 is exclusively located in mitochondria

and not present in peroxisomes”, Histochem Cell Biol. 2013 Aug;140(2):105-17.

83. James M Flynn, et al., “SOD2 in mitochondrial dysfunction and neurodegeneration”,

Free Radic Biol Med. 2013 Sep;62:4-12.

84. Katherine J Wert, et al., “Extracellular superoxide dismutase (SOD3) regulates

oxidative stress at the vitreoretinal interface”, Free Radic Biol Med. 2018 Aug

20;124:408-419.

106

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る