リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Structural studies on the stalk region of the axonemal and cytoplasmic dynein heavy chain」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Structural studies on the stalk region of the axonemal and cytoplasmic dynein heavy chain

Ko, Seolmin 大阪大学 DOI:10.18910/93027

2023.09.25

概要

Title

Structural studies on the stalk region of the
axonemal and cytoplasmic dynein heavy chain

Author(s)

Ko, Seolmin

Citation

大阪大学, 2023, 博士論文

Version Type VoR
URL

https://doi.org/10.18910/93027

rights
Note

Osaka University Knowledge Archive : OUKA
https://ir.library.osaka-u.ac.jp/
Osaka University

Form 3

Abstract of Thesis
Name

Title

( Ko Seolmin)

Structural studies on the stalk region of the axonemal and cytoplasmic dynein heavy chain (軸
糸および細胞質ダイニン重鎖にあるストーク領域の構造研究)
Dynein motors, including axonemal and cytoplasmic dyneins, are an ATP-dependent microtubular motor

protein responsible for various biological processes and their dysfunction can lead to various diseases.
Despite its biological importance, structure-based dynein motor mechanisms remain unclear. In this study,
I focused on two specific aspects: the structural characterization of axonemal dynein stalk and the interaction
between cytoplasmic dynein microtubule-binding domain (MTBD) and microtubules.
For axonemal dynein, the X-ray crystal structure of human inner-arm dynein-d (DNAH1) with a long
coiled-coil stalk region was successfully determined as the first high resolution structure of axonemal dynein
stalk, enabling for a direct comparison with cytoplasmic and outer-arm dynein structures. The structural
comparison revealed distinctive characteristics in helical interaction, domain arrangement and flap motif
extension. Notably, additional analysis of knobs-into-hole packing of long coiled coil and relative domain
arrangement suggested a type-specific packing tightness and interacting pattern. Based on these findings,
a novel and isoform-specific "spike shoe model" was proposed to elucidate the role of the uniquely extended
flap motif in axonemal dynein. These findings provide valuable insights into the underlying mechanism of
axonemal dynein activity. Moreover, the first atomic structure of DNAH1 could be further used for a
representative example for future high-resolution axonemal inner-arm dynein complex studies.
Regarding cytoplasmic dynein, I aimed to investigate the structural details of the MTBD and its
interaction with microtubules. Previous attempts were limited by low-resolution structures or proteolysis
of the MTBD during crystallization. To overcome these challenges, I developed a new construct, modified
SRS-dynein fusion protein with α registry, fused with seryl tRNA-synthetase (SRS), to stabilize its coiled
coil registry to “alpha” with high binding affinity to microtubule. Additionally, I utilized the porcine

tubulin and D1 DARPin protein to form a triple complex of SRS-dynein, D1 DARPin, and the porcine tubulin dimer
for crystallization. Although I encountered difficulties with protein stability, I successfully obtained both
the triple complexed proteins and modified SRS-dynein crystals in the desired form. Finally, I propose using
she1 in future strategies to improve protein stability and gain a better understanding of the dynein-tubulin
interactions.
Overall, this study contributes to our understanding of axonemal and cytoplasmic dynein motors by providing
new insights into their structural characteristics and how they interact with microtubules.

様式 7

論文審査の結果の要旨及び担当者


論文審査担当者





SEOLMIN

KO



(職)





主 査





栗 栖 源 嗣

副 査





原 田 慶 恵

副 査





中 川 敦 史

副 査







隆 英

論文審査の結果の要旨
学位申請 者は ,細 胞内 で はたら く分 子モ ータ ーで あ るダイ ニン に着 目し 「Structural studies on the stalk
region of the axonemal and cytoplasmic dynein heavy chain(軸糸および細胞質ダイニン重鎖にあるストーク
領域の構造研究)」と題する研究を行った。
ダイニンは,AAA+スーパーファミリーに属する巨大な分子複合体で,ATP 加水分解のエネルギーをつかって力
発生し,微小管上をマイナス端方向へ移動するモーター分子である。生理的な機能に基づいて,ダイニンは軸糸
ダイニンと細胞質ダイニンに分類されている。細胞質ダイニンは,有糸分裂中の積荷輸送,細胞内輸送,鞭毛内
輸送を担っており,軸糸ダイニンは,周期的に配置された複数種のダイニン分子が活性化および不活性化を繰り
返すことで繊毛または鞭毛の波打ち運動を駆動する。軸糸ダイニンの機能不全は,原発性線毛運動不全症や精子
運動不全などの疾患を引き起こすことが知られている。このような生物学的重要性にもかかわらず,軸糸ダイニ
ンに存在する3種の外腕ダイニン(OADα,β,γ)と8種ある内腕ダイニンのアイソフォーム間での構造的違い
や,それぞれがどのように微小管と相互作用するのか,その様式の違いについては不明なことが多く残されてい
た。本論文で申請者は,ヒト内腕ダイニン d(DNAH1)の長い逆平行コイルドコイルと微小管結合ドメイン(MTBD)
を含むストーク領域の X 線結晶構造を 2.7 Å 分解能で決定した。これは内腕ダイニンのコイルドコイルを含む領
域の最初の構造であり,内腕ダイニンのアイソフォームに特徴的な構造の違いについて議論している。申請者が
着目したのは,ストーク領域のコイルドコイルと MTBD との相対的な配置が細胞質ダイニンとは異なっていた点で
ある。さらにβヘアピン構造をとる MTBD から突き出た“フラップ”と呼ばれる領域も,部分構造がわかっている
他 2 種の内腕ダイニンとは異なった向きに突き出ており,内腕ダイニン(DNAH1)と微小管の間の相互作用につい
て,アイソフォームごとに相互作用様式が異なるとする「スパイクシューモデル」を提案していることは特に注
目すべき点である。
さらに,ダイニンのコイルドコイルを安定化するセリル tRNA 合成酵素との融合タンパク質を設計し,アダプ
タータンパク質(DARPin)を加えて混合することで,微小管を構成するα,β-チューブリンとの三重複合体を形
成させて,安定な複合体が得られる方法を確立している。今後のダイニンと微小管との複合体構造研究につなが
る道を拓いた重要な成果である。
申請者は,軸糸ダイニンのうち構造情報が少なかった内腕ダイニンに着目し,DNAH1 のコイルドコイルと MTBD
との相対配置の違いが示唆するアイソフォーム特異的な微小管との相互作用モデルを提唱した。特にフラップ領
域の構造的な違いについて考察を行い,最終的に内腕ダイニンの微小管上でのステッピングについて新たなモデ
ルを提唱するに至っている。本論文の研究内容は,軸糸ダイニンの運動制御機構を理解する上で,大変意義のあ
る成果である。
よって,本論文は博士(理学)の学位論文として十分価値あるものと認める。

この論文で使われている画像

参考文献

1. Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463:485–492.

Available from: https://doi.org/10.1038/nature08908

2. Howard J, Clark RL (2002) Mechanics of motor proteins and the cytoskeleton. Appl. Mech.

Rev. 55:B39–B39. Available from: https://doi.org/10.1115/1.1451234

3. Vale RD (2003) The molecular motor toolbox for intracellular transport. Cell 112:467–480.

Available from: https://doi.org/10.1016/S0092-8674(03)00111-9

4. Mallik R, Gross SP (2004) Molecular motors: Strategies to get along. Current Biology 14

R971–R982. Available from: 10.1016/j.cub.2004.10.046

5. King SM (2000) The dynein microtubule motor. Biochimica et Biophysica Acta (BBA) Molecular Cell Research 1496:60–75.

Available from: https://doi.org/10.1016/S0167-4889(00)00009-4

6. Mitchison T, Kirschner M (1984) Microtubule assembly nucleated by isolated centrosomes.

Nature 312:232–237. Available from: https://doi.org/10.1038/312232a0

7. Fuchs E, Cleveland DW (1998) A structural scaffolding of intermediate filaments in health

and disease. Science 279:514–519. Available from: 10.1126/science.279.5350.514

8. Dominguez R (2009) Actin filament nucleation and elongation factors–structure–function

relationships. Crit Rev Biochem Mol Biol 44:351–366.

Available from: https://doi.org/10.3109/10409230903277340

9. Koonce MP, Grissom PM, Lyon M, Pope T, Mcintosh JR (1994) Molecular characterization

of a cytoplasmic dynein from Dictyostelium. Journal of Eukaryotic Microbiology 41:645–651.

Available from: https://doi.org/10.1111/j.1550-7408.1994.tb01528.x

81

10. Vallee RB, Williams JC, Varma D, Barnhart LE (2004) Dynein: An ancient motor protein

involved in multiple modes of transport. J Neurobiol 58:189–200.

Available from: https://doi.org/10.1002/neu.10314

11. Howell BJ, McEwen BF, Canman JC, Hoffman DB, Farrar EM, Rieder CL, Salmon ED

(2001) Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles

and has a role in mitotic spindle checkpoint inactivation. Journal of Cell Biology 155:1159–

1172. Available from: https://doi.org/10.1083/jcb.200105093

12. Gibbons IR, Rowe AJ (1965) Dynein: A protein with adenosine triphosphatase activity from

cilia. Science 149:424–426. Available from: https://doi.org/10.1126/science.149.3682.424

13. Gibbons IR (1981) Cilia and flagella of eukaryotes. J Cell Biol 91:107s–124s.

Available from: https://doi.org/10.1083/jcb.91.3.107s

14. Manton I, Clarke B, Greenwood AD, Flint EA (1952) Further observations on the structure

of plant cilia, by a combination of visual and electron microscopy. J Exp Bot 3:204–215.

Available from: https://doi.org/10.1093/jxb/3.2.204

15. Hafezparast M, Klocke R, Ruhrberg C, Marquardt A, Ahmad-Annuar A, Bowen S, Lalli G,

Witherden AS, Hummerich H, Nicholson S, et al. (2003) Mutations in dynein link motor neuron

degeneration to defects in retrograde transport. Science 300:808–812.

Available from: https://doi.org/10.1126/science.1083129

16. Imtiaz F, Allam R, Ramzan K, Al-Sayed M (2015) Variation in DNAH1 may contribute to

primary ciliary dyskinesia. BMC Med Genet 16:14.

Available from: https://doi.org/10.1186/s12881-015-0162-5

17. Toda A, Tanaka H, Kurisu G (2018) Structural atlas of dynein motors at atomic resolution.

Biophys Rev 10:677–686. Available from: https://doi.org/10.1007/s12551-018-0402-y

82

18. Stuchell-Brereton MD, Siglin A, Li J, Moore JK, Ahmed S, Williams JC, Cooper JA (2011)

Functional interaction between dynein light chain and intermediate chain is required for mitotic

spindle positioning. Mol Biol Cell 22:2690–2701.

Available from: https://doi.org/10.1091/mbc.e11-01-0075

19. Habura A, Tikhonenko I, Chisholm RL, Koonce MP (1999) Interaction mapping of a dynein

heavy chain: Identification of dimerization and intermediate-chain binding domains. Journal

of Biological Chemistry 274:15447–15453.

Available from: https://doi.org/10.1074/jbc.274.22.15447

20. Asai DJ, Koonce MP (2001) The dynein heavy chain: structure, mechanics and evolution.

Trends Cell Biol 11:196–202.

Available from: https://doi.org/10.1016/S0962-8924(01)01970-5

21. Tynan SH, Gee MA, Vallee RB (2000) Distinct but overlapping sites within the cytoplasmic

dynein heavy chain for dimerization and for intermediate chain and light intermediate chain

binding. Journal of Biological Chemistry 275:32769–32774.

Available from: https://doi.org/10.1074/jbc.M001537200

22. Schmidt H, Carter AP (2016) Review: Structure and mechanism of the dynein motor

ATPase. Biopolymers 105:557–567. Available from: https://doi.org/10.1002/bip.22856

23. Carter AP (2013) Crystal clear insights into how the dynein motor moves. J Cell Sci

126:705–713. Available from: https://doi.org/10.1242/jcs.120725

24. Goodenough U, Heuser J (1984) Structural comparison of purified dynein proteins with in

situ dynein arms. J Mol Biol 180:1083–1118.

Available from: https://doi.org/10.1016/0022-2836(84)90272-9

25. Nishikawa Y, Inatomi M, Iwasaki H, Kurisu G (2016) Structural change in the dynein stalk

83

region associated with two different affinities for the microtubule. J Mol Biol 428:1886–1896.

Available from: https://doi.org/10.1016/j.jmb.2015.11.008

26. Kon T, Imamula K, Roberts AJ, Ohkura R, Knight PJ, Gibbons IR, Burgess SA, Sutoh K

(2009) Helix sliding in the stalk coiled coil of dynein couples ATPase and microtubule binding.

Nat Struct Mol Biol 16:325–333. Available from: https://doi.org/10.1038/nsmb.1555

27. Gibbons IR, Garbarino JE, Tan CE, Reck-Peterson SL, Vale RD, Carter AP (2005) The

affinity of the dynein microtubule-binding domain is modulated by the conformation of its

coiled-coil stalk. Journal of Biological Chemistry 280:23960–23965.

Available from: https://doi.org/10.1074/jbc.M501636200

28. Kato YS, Yagi T, Harris SA, Ohki S, Yura K, Shimizu Y, Honda S, Kamiya R, Burgess SA,

Tanokura M (2014) Structure of the microtubule-binding domain of flagellar dynein. Structure

22:1628–1638. Available from: https://doi.org/10.1016/j.str.2014.08.021

29. Ben Khelifa M, Coutton C, Zouari R, Karaouzène T, Rendu J, Bidart M, Yassine S, Pierre

V, Delaroche J, Hennebicq S, et al. (2014) Mutations in DNAH1, which encodes an inner arm

heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the

sperm flagella. The American Journal of Human Genetics 94:95–104.

Available from: https://doi.org/10.1016/j.ajhg.2013.11.017

30. Toda A, Nishikawa Y, Tanaka H, Yagi T, Kurisu G (2020) The complex of outer-arm dynein

light chain-1 and the microtubule-binding domain of the γ heavy chain shows how axonemal

dynein tunes ciliary beating. Journal of Biological Chemistry 295:3982–3989.

Available from: https://doi.org/10.1074/jbc.RA119.011541

31. Lacey SE, He S, Scheres SHW, Carter AP (2019) Cryo-EM of dynein microtubule-binding

domains shows how an axonemal dynein distorts the microtubule. Elife 8:e47145.

84

Available from: https://doi.org/10.7554/eLife.47145

32. Kon T, Oyama T, Shimo-Kon R, Imamula K, Shima T, Sutoh K, Kurisu G (2012) The 2.8 Å

crystal structure of the dynein motor domain. Nature 484:345–350.

Available from: https://doi.org/10.1038/nature10955

33. Kabsch W (2010) XDS. Acta Crystallographica Section D 66:125–132. Available from:

https://doi.org/10.1107/S0907444909047337

34. Adams PD, Afonine P V, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, et al. (2010) PHENIX: a comprehensive Python-based

system for macromolecular structure solution. Acta Crystallographica Section D 66:213–221.

Available from: https://doi.org/10.1107/S0907444909052925

35. Terwilliger TC, Adams PD, Read RJ, McCoy AJ, Moriarty NW, Grosse-Kunstleve RW,

Afonine P V, Zwart PH, Hung L-W (2009) Decision-making in structure solution using

Bayesian estimates of map quality: the PHENIX AutoSol wizard. Acta Crystallographica

Section D 65:582–601. Available from: https://doi.org/10.1107/S0907444909012098

36. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot.

Acta Crystallographica Section D 66:486–501.

Available from: https://doi.org/10.1107/S0907444910007493

37. Afonine P V, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M,

Terwilliger TC, Urzhumtsev A, Zwart PH, Adams PD (2012) Towards automated

crystallographic structure refinement with phenix.refine. Acta Crystallographica Section D

68:352–367. Available from: https://doi.org/10.1107/S0907444912001308

38. Headd JJ, Echols N, Afonine P V, Grosse-Kunstleve RW, Chen VB, Moriarty NW,

Richardson DC, Richardson JS, Adams PD (2012) Use of knowledge-based restraints in

85

phenix.refine to improve macromolecular refinement at low resolution. Acta Crystallographica

Section D 68:381–390. Available from: https://doi.org/10.1107/S0907444911047834

39. Walshaw J, Woolfson DN (2001) SOCKET: a program for identifying and analysing coiledcoil motifs within protein structures. J Mol Biol 307:1427–1450.

Available from: https://doi.org/10.1093/bioinformatics/btab631

40. Kumar P, Woolfson DN (2021) Socket2: a program for locating, visualizing and analyzing

coiled-coil interfaces in protein structures. Bioinformatics 37:4575–4577.

Available from: https://doi.org/10.1093/bioinformatics/btab631

41. Strelkov S V, Burkhard P (2002) Analysis of α-helical coiled coils with the program

TWISTER reveals a structural mechanism for stutter compensation. J Struct Biol 137:54–64.

Available from: https://doi.org/10.1006/jsbi.2002.4454

42. Girdlestone C, Hayward S (2015) The DynDom3D webserver for the analysis of domain

movements in multimeric proteins. Journal of Computational Biology 23:21–26.

Available from: https://doi.org/10.1089/cmb.2015.0143

43. Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M (2022) ColabFold:

making protein folding accessible to all. Nat Methods 19:679–682.

Available from: https://doi.org/10.1038/s41592-022-01488-1

44. Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, Ben-Tal N (2016) ConSurf

2016: An improved methodology to estimate and visualize evolutionary conservation in

macromolecules. Nucleic Acids Res 44:W344–W350.

Available from: https://doi.org/10.1093/nar/gkw408

45. Walton T, Gui M, Velkova S, Fassad MR, Hirst RA, Haarman E, O’Callaghan C, Bottier

M, Burgoyne T, Mitchison HM, et al. (2023) Axonemal structures reveal mechanoregulatory

86

and disease mechanisms. Nature 618:625–633.

Available from: https://doi.org/10.1038/s41586-023-06140-2

46. Lindemann CB (1994) A model of flagellar and ciliary functioning which uses the forces

transverse to the axoneme as the regulator of dynein activation. Cell Motil 29:141–154.

Available from: https://doi.org/10.1002/cm.970290206

47. Bell CW, Gibbons IR (1982) Structure of the dynein-1 outer arm in sea urchin sperm

flagella. II. Analysis by proteolytic cleavage. Journal of Biological Chemistry 257:516–522.

Available from: https://doi.org/10.1016/S0021-9258(19)68394-8

48. Gibbons IR (1995) Dynein family of motor proteins: Present status and future questions.

Cell Motil 32:136–144. Available from: https://doi.org/10.1002/cm.970320214

49. Carter AP, Garbarino JE, Wilson-Kubalek EM, Shipley WE, Cho C, Milligan RA, Vale RD,

Gibbons IR (2008) Structure and functional role of dynein’s microtubule-binding domain.

Science 322:1691–1695. Available from: https://doi.org/10.1126/science.1164424

50. Castoldi M, Popov A V (2003) Purification of brain tubulin through two cycles of

polymerization–depolymerization in a high-molarity buffer. Protein Expr Purif 32:83–88.

Available from: https://doi.org/10.1016/S1046-5928(03)00218-3

51. Gigant B, Wang W, Dreier B, Jiang Q, Pecqueur L, Plückthun A, Wang C, Knossow M

(2013) Structure of a kinesin–tubulin complex and implications for kinesin motility. Nat Struct

Mol Biol 20:1001–1007. Available from: https://doi.org/10.1038/nsmb.2624

52. Ecklund KH, Morisaki T, Lammers LG, Marzo MG, Stasevich TJ, Markus SM (2017) She1

affects dynein through direct interactions with the microtubule and the dynein microtubulebinding domain. Nat Commun 8:2151.

Available from: https://doi.org/10.1038/s41467-017-02004-2

87

List of publication

1. Seolmin Ko, Akiyuki Toda, Hideaki Tanaka, Jian Yu, Genji Kurisu (2023) Crystal structure

of the stalk region of axonemal inner-arm dynein-d reveals unique features in the coiled-coil

and microtubule-binding domain. FEBS Letters, available online ahead of print. Available from:

https://doi.org/10.1002/1873-3468.14690

88

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る