リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A memory‑improving dipeptide, Tyr‑Pro, can reach the mouse brain after oral administration」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A memory‑improving dipeptide, Tyr‑Pro, can reach the mouse brain after oral administration

Cheng, Lihong チェン, リーホン Tanaka, Mitsuru 田中, 充 タナカ, ミツル Yoshino, Atsuko 芳野, 温子 ヨシノ, アツコ Nagasato, Yuki 永里, 侑貴 ナガサト, ユキ Takata, Fuyuko 高田, 芙友子 タカタ, フユコ Dohgu, Shinya 道具, 伸也 ドウグ, シンヤ Matsui, Toshiro 松井, 利郎 マツイ, トシロウ 九州大学

2023.10.07

概要

The transport and accumulation of orally administered functional food-derived peptides in the brain was not fully explored. Thus, in the present study, we aimed to provide critical evidence regarding

この論文で使われている画像

参考文献

1. World Health Organization. Global status report on the public health response to dementia. In: Security Research Hub Reports

(2021).

2. Casanova, F., Nascimento, L. G. L., Silva, N. F. N., de Carvalho, A. F. & Gaucheron, F. Interactions between caseins and food-derived

bioactive molecules: A review. Food Chem. 359, 129820 (2021).

3. Min, L. J. et al. Administration of bovine casein-derived peptide prevents cognitive decline in Alzheimer disease model mice. PLoS

One 12, e0171515 (2017).

Scientific Reports |

(2023) 13:16908 |

https://doi.org/10.1038/s41598-023-44161-z

Vol.:(0123456789)

www.nature.com/scientificreports/

4. Ano, Y. et al. Tryptophan-related dipeptides in fermented dairy products suppress microglial activation and prevent cognitive

decline. Aging 11, 2949–2967 (2019).

5. Ano, Y. et al. Tryptophan-tyrosine dipeptide, the core sequence of β-Lactolin, improves memory by modulating the dopamine

system. Nutrients 11, 348 (2019).

6. Ozawa, H., Miyazawa, T. & Miyazawa, T. Effects of dietary food components on cognitive functions in older adults. Nutrients 13,

2804 (2021).

7. Giromini, C., Cheli, F., Rebucci, R. & Baldi, A. Invited review: Dairy proteins and bioactive peptides: Modeling digestion and the

intestinal barrier. J. Dairy Sci. 102, 929–942 (2019).

8. Hanafy, A. S., Dietrich, D., Fricker, G. & Lamprecht, A. Blood-brain barrier models: Rationale for selection. Adv. Drug Deliv. Rev.

176, 113859 (2021).

9. Sakamoto, K. Generation of KS-487 as a novel LRP1-binding cyclic peptide with higher affinity, higher stability and BBB permeability. Biochem. Biophys. Rep. 32, 101367 (2022).

10. Naik, P. & Cucullo, L. In vitro blood-brain barrier models: Current and perspective technologies. J. Pharm. Sci. 101, 1337–1354

(2012).

11. Chikhale, E. G., Ng, K.-Y., Burton, P. S. & Borchardt, R. T. Hydrogen bonding potential as a determinant of the in vitro and in situ

bood–brain barrier permeability of peptides. Pharm. Res. 11, 412–419 (1994).

12. Kuhnline Sloan, C. D. et al. Analytical and biological methods for probing the blood-brain barrier. Annu. Rev. Anal. Chem. (Palo

Alto Calif.) 5, 505–531 (2012).

13. Liu, X. et al. Molecular imaging of drug transit through the blood-brain barrier with MALDI mass spectrometry imaging. Sci.

Rep. 3, 2859 (2013).

14. Groothuis, D. R. et al. Changes in blood-brain barrier permeability associated with insertion of brain cannulas and microdialysis

probes. Brain Res. 803, 218–230 (1998).

15. Wunder, A., Schoknecht, K., Stanimirovic, D. B., Prager, O. & Chassidim, Y. Imaging blood-brain barrier dysfunction in animal

disease models. Epilepsia 53, 14–21 (2012).

16. Ano, Y. et al. Novel lactopeptides in fermented dairy products improve memory function and cognitive decline. Neurobiol. Aging

72, 23–31 (2018).

17. Tanaka, M. et al. Brain-transportable dipeptides across the blood-brain barrier in mice. Sci. Rep. 9, 5769 (2019).

18. Tanaka, M. et al. Brain-transportable soy dipeptide, Tyr-Pro, attenuates amyloid β peptide25-35-induced memory impairment in

mice. NPJ Sci. Food 4, 7 (2020).

19. Shimbo, K., Oonuki, T., Yahashi, A., Hirayama, K. & Miyano, H. Precolumn derivatization reagents for high-speed analysis of

amines and amino acids in biological fluid using liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid

Commun. Mass Spectrom. 23, 1483–1492 (2009).

20. Li, K., Guo, S., Tang, W. & Li, B. Characterizing the spatial distribution of dipeptides in rodent tissue using MALDI MS imaging

with on-tissue derivatization. Chem. Commun. 57, 12460–12463 (2021).

21. Patil, P. J. et al. An updated review on food-derived bioactive peptides: Focus on the regulatory requirements, safety, and bioavailability. Compr. Rev. Food Sci. Food Saf. 21, 1732–1776 (2022).

22. Wang, M. et al. Walnut-derived peptide PW5 ameliorates cognitive impairments and alters gut microbiota in APP/PS1 transgenic

mice. Mol. Nutr. Food Res. 63, e1900326 (2019).

23. Yang, S., Kawamura, Y. & Yoshikawa, M. Effect of rubiscolin, a delta opioid peptide derived from Rubisco, on memory consolidation. Peptides 24, 325–328 (2003).

24. Takahashi, M., Fukunaga, H., Kaneto, H., Fukudome, S. & Yoshikawa, M. Behavioral and pharmacological studies on gluten

exorphin A5, a newly isolated bioactive food protein fragment, in mice. Jpn. J. Pharmacol. 84, 259–265 (2000).

25. Ju, D.-T. et al. Bioactive peptide VHVV upregulates the long-term memory-related biomarkers in adult spontaneously hypertensive

rats. Int. J. Mol. Sci. 20, 3069 (2019).

26. Tada, A. M., Hamezah, H. S., Yanagisawa, D., Morikawa, S. & Tooyama, I. Neuroprotective effects of casein-derived peptide MetLys-Pro (MKP) in a hypertensive model. Front. Neurosci. 14, 845 (2020).

27. Ohsawa, K., Nakamura, F., Uchida, N., Mizuno, S. & Yokogoshi, H. Lactobacillus helveticus-fermented milk containing lactononadecapeptide (NIPPLTQTPVVVPPFLQPE) improves cognitive function in healthy middle-aged adults: A randomised, doubleblind, placebo-controlled trial. Int. J. Food Sci. Nutr. 69, 369–376 (2018).

28. Foltz, M., van der Pijl, P. C. & Duchateau, G. S. M. J. E. Current in vitro testing of bioactive peptides is not valuable. J. Nutr. 140,

117–118 (2010).

29. Matsui, T., Yoshino, A. & Tanaka, M. A trip of peptides to the brain. Food Prod. Process Nutr. https://​doi.​org/​10.​1186/​s43014-​020-​

00044-8 (2020).

30. Witt, K. A., Gillespie, T. J., Huber, J. D., Egleton, R. D. & Davis, T. P. Peptide drug modifications to enhance bioavailability and

blood-brain barrier permeability. Peptides 22, 2329–2343 (2001).

31. Soldin, O. P. & Mattison, D. R. Sex differences in pharmacokinetics and pharmacodynamics. Clin. Pharmacokinet. 48, 143–157

(2009).

32. Tanaka, M., Hong, S.-M., Akiyama, S., Hu, Q.-Q. & Matsui, T. Visualized absorption of anti-atherosclerotic dipeptide, Trp-His, in

Sprague-Dawley rats by LC-MS and MALDI-MS imaging analyses. Mol. Nutr. Food Res. 59, 1541–1549 (2015).

33. Nakashima, E. M. N. et al. Application of 13C stable isotope labeling liquid chromatography-multiple reaction monitoring-tandem

mass spectrometry method for determining intact absorption of bioactive dipeptides in rats. Anal. Biochem. 414, 109–116 (2011).

34. Aito-Inoue, M., Lackeyram, D., Fan, M. Z., Sato, K. & Mine, Y. Transport of a tripeptide, Gly-Pro-Hyp, across the porcine intestinal

brush-border membrane. J. Pept. Sci. 13, 468–474 (2007).

35. Matsui, T. et al. Combined administration of captopril with an antihypertensive Val-Tyr di-peptide to spontaneously hypertensive

rats attenuates the blood pressure lowering effect. Life Sci. 79, 2492–2498 (2006).

36. Cisternino, S. et al. Coexistence of passive and proton antiporter-mediated processes in nicotine transport at the mouse blood–brain

barrier. AAPS J. 15, 299–307 (2013).

37. Murakami, H., Takanaga, H., Matsuo, H., Ohtani, H. & Sawada, Y. Comparison of blood-brain barrier permeability in mice and

rats using in situ brain perfusion technique. Am. J. Physiol. Heart Circ. Physiol. 279, H1022–H1028 (2000).

38. Courad, J. P. et al. Acetaminophen distribution in the rat central nervous system. Life Sci. 69, 1455–1464 (2001).

39. Ayoub, B. M. et al. Repositioning of omarigliptin as a once-weekly intranasal Anti-parkinsonian Agent. Sci. Rep. https://​doi.​org/​

10.​1038/​s41598-​018-​27395-0 (2018).

40. Wevers, N. R. & de Vries, H. E. Morphogens and blood-brain barrier function in health and disease. Tissue Barriers 4, e1090524

(2016).

41. Advokat, C. & Gulati, A. Spinal transection reduces both spinal antinociception and CNS concentration of systemically administered morphine in rats. Brain Res. 555, 251–258 (1991).

42. Parida, I. S. et al. Supplementation ofBacillus amyloliquefaciensAS385 culture broth powder containing 1-deoxynojirimycin in

a high-fat diet altered the gene expressions related to lipid metabolism and insulin signaling in mice epididymal white adipose

tissue. Food Funct. 11, 3926–3940 (2020).

43. Takasu, S. et al. Intestinal absorption and tissue distribution of aza-sugars from mulberry leaves and evaluation of their transport

by sugar transporters. J. Agric. Food Chem. 68, 6656–6663 (2020).

Scientific Reports |

Vol:.(1234567890)

(2023) 13:16908 |

https://doi.org/10.1038/s41598-023-44161-z

10

www.nature.com/scientificreports/

44. Jurkowski, M. P. et al. Beyond the hippocampus and the SVZ: Adult neurogenesis throughout the brain. Front. Cell. Neurosci. 14,

576444 (2020).

45. Ng, Y. P., Or, T. C. T. & Ip, N. Y. Plant alkaloids as drug leads for Alzheimer’s disease. Neurochem. Int. 89, 260–270 (2015).

46. Triguero, D., Buciak, J. & Pardridge, W. M. Capillary depletion method for quantification of blood-brain barrier transport of

circulating peptides and plasma proteins. J. Neurochem. 54, 1882–1888 (1990).

Author contributions

L.C., M.T., A.Y., Y.N., F.T., and S.D. performed mouse administration experiments. L.C. and M.T. performed

LC-qTOF/MS analysis. L.C., M.T., F.T., S.D., and T.M. analyzed and discussed the results and designed the

experimental strategy. L.C. and M.T. wrote the manuscript. T.M. designed the study, revised the manuscript, and

supervised the project. All authors have read and approved the final manuscript for publication.

Funding

This work was partly supported by JSPS KAKENHI [grant numbers JP21H04863 (T.M.) and JP21F21386 (T.M.

and L.C.)].

Competing interests The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://​doi.​org/​

10.​1038/​s41598-​023-​44161-z.

Correspondence and requests for materials should be addressed to T.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

Scientific Reports |

(2023) 13:16908 |

https://doi.org/10.1038/s41598-023-44161-z

11

Vol.:(0123456789)

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る