リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Immunological analysis of myeloid derived suppressor cell (MDSC) : Osteoclast differentiation and immunosenescence」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Immunological analysis of myeloid derived suppressor cell (MDSC) : Osteoclast differentiation and immunosenescence

石戸 克尚 富山大学

2020.03.24

概要

【緒言】
担癌状態では様々な機序による免疫逃避が腫瘍の進展に影響していることが知られている.近年,免疫逃避機序の一つである免疫チェックポイント分子に対する標的化治療は,実際の癌治療において免疫逃避機序の解除がいかに重要であるかということを改めて示す結果となっている.
癌の免疫逃避機構の一つに,免疫抑制性細胞を介した抗腫瘍免疫抑制がある.骨髄由来免疫抑制性細胞 myeloid derived suppressor cell (MDSC)は,マウスでは CD11b および Gr-1 を表面マーカーとする細胞で,抗腫瘍免疫反応を強く抑制する免疫抑制性細胞 であることが報告されている.われわれの先行研究において,この CD11b+Gr-1+細胞が, 腫の進展に伴い様々な臓器で著しく増加し,特に腫局所における T 細胞の抑制に強く関与していることを明らかとした.
また,癌においては加齢変化に伴う免疫システムの老化現象であるいわゆる免疫老化が,腫瘍における免疫抑制や腫瘍の進展と関連することも示唆されている.口腔癌は早期に顎骨に浸潤することが多く,極めて浸潤性の高い特徴を有する.顎骨浸潤においては破骨細胞が重要な役割を果たすが,顎骨浸潤過程における破骨細胞分化のメカニズムに関しては未だに不明な点が多い.
そこで,本研究では口腔癌における免疫抑制機序と局所浸潤との関連を探るべく,免疫抑制性細胞であるCD11b+Gr-1+細胞の口腔癌顎骨浸潤機序における役割と,加齢変化に伴う免疫抑制がどのように影響しているかについて解析を行った.

【材料と方法】
マウス口腔癌モデルは,マウス口腔癌細胞株 NR-S1K を 8 週齢のC3H/HeN マウスの下顎部に移植し作製した.担癌マウスの各臓器から,CD11b+Gr-1+細胞を回収し,各種表面抗原の解析ならびに破骨細胞分化について解析した.
次に,8 週齢(若齢)と 17 月齢(老齢)のマウス口腔癌モデルを作製し,各臓器における免疫抑制性細胞を含む様々な免疫細胞の割合,T 細胞免疫応答,免疫チェックポイント阻害薬に対する抗腫瘍効果に関して比較・検討を行った.

【結果】
口腔癌担癌マウスでは,腫瘍から分離した CD11b+Gr-1+細胞は,脾臓,骨髄,末梢血から分離した細胞に比べて RANK,NFATc1,Integrinβ3 の発現が増強し,また破骨細胞への分化能が高いことが TRACP5b assay による定量化で明らかとなった.
老齢マウスと若齢マウスによる比較検討においては,移植腫瘍の増殖は老齢マウスにおいて有意に早く,老齢マウスでは若齢マウスに比べて T 細胞上の免疫チェックポイント分子群の発現が増強し,T 細胞の免疫応答能が減弱していた.CD11b+Gr-1+細胞の割合については,特に腫瘍組織において若齢マウスよりも老齢マウスで優位に増加していた.さらに,抗 PD-1 抗体,抗 CTLA-4 抗体,抗 PD-L1 抗体による抗腫瘍効果の比較では,若齢 マウスに比べて老齢マウスで,顕著な腫瘍増殖抑制効果を示した.

【結論】
口腔癌の顎骨浸潤においては, 口腔癌の腫瘍局所で集簇する CD11b+Gr-1+細胞の破 骨細胞への分化が重要な役割を果すことが示唆された . 特に老齢の宿主においては, 腫 瘍局所における CD11b+Gr-1+細胞の割合が増加することから , この機序は加齢によりさら に促進する可能性も示された.
以上の結果から,口腔癌の局所浸潤の制御においてはCD11b+Gr-1+細胞の有効な標 的化が重要であると考えられた.

この論文で使われている画像

参考文献

〔1〕Topalian SL, Hodi FS, Brahmer JR,Gettinger SN, Smith DC, McDermott DF, et al. Safety and activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012; 366:2443-54.

〔2〕Brahmer JR Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safty and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 2012; 366:2455-65.

〔3〕Tomihara K, Curiel TJ, Zhang B. Optimization of immunotherapy in elderly cancer patients. Crit Rev Oncog 2013; 18:573-83.

〔4〕Hurez V, Padrón ÁS, Svatek RS, Curiel TJ. Considerations for successful cancer immunotherapy in aged hosts. Clin Exp Immunol 2017; 187:53-63.

〔5〕Ioannides CG, Whiteside TL. T cell recognition of human tumors: implication for molecular immunotherapy of cancer. Clin Immunol Immunopathol 1993; 66:91– 106.

〔6〕Kiessling R, Wasserman K, Horiguchi S, Kono K, Sjoberg J, Pisa P, et al. Tumor- induced immune dysfunction. Cancer Immunol Immunother 1999; 48:353–62.

〔7〕Kim R, Emi M, Tanabe K, Arihiro K. Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res 2006; 66:5527–36.

〔8〕Hicklin DJ, Marincola FM, Ferrone S. HLA class I antigen downregulation in human cancers: T-cell immunotherapy revives an old story. Mol Med Today 1999; 5:178–86.

〔9〕Young MR, Wright MA, Matthews JP, Malik I, Prechel M. Suppression of T cell proliferation by tumor-induced granulocyte-macrophage progenitor cells producing transforming growth factor-beta and nitric oxide. J Immunol 1996; 156:1916–22.

〔10〕Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 1996; 2:1096–103.

〔11〕Matsuda M, Salazar F, Petersson M, Masucci G, Hansson J, Pisa P, et al. Interleukin 10 pretreatment protects target cells from tumor- and allo-specific cytotoxic T cells and downregulates HLA class I expression. J Exp Med 1994; 180:2371–6.

〔12〕Sotomayor EM, Fu YX, Lopez-Cepero M, Herbert L, Jimenez JJ, Albarracin C, et al. Role of tumor-derived cytokines on the immune system of mice bearing a mammary adenocarcinoma. II. Down-regulation of macrophage-mediated cytotoxicity by tumor-derived granulocyte-macrophage colony-stimulating factor. J Immunol 1991; 147:2816–23.

〔13〕de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 2006; 6:24–37.

〔14〕Sica A, Bronte V. Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 2007; 117: 1155–66.

〔15〕Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 2007; 25:267–96.

〔16〕Bronte V, Wang M, Overwijk WW, Surman DR, Pericle F, Rosenberg SA, et al. Apoptotic death of CD8+ T lymphocytes after immunization: induction of a suppressive population of Mac-1+/Gr-1+ cells. J Immunol 1998; 161:5313–20.

〔17〕Greten TF, Manns MP, Korangy F. Myeloid derived suppressor cells in human diseases. Int Immunopharmacol 2011; 11:802–7.

〔18〕Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10:942–9.

〔19〕Wolf D, Wolf AM, Rumpold H, Fiegl H, Zeimet AG, Muller-Holzner E, et al. The expression of the regulatory T cell-specific forkhead box transcription factor FoxP3 is associated with poor prognosis in ovarian cancer. Clin Cancer Res 2005; 11:8326–31.

〔20〕Bates GJ, Fox SB, Han C, Leek RD, Garcia JF, Harris AL, et al. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 2006; 24:5373–80.

〔21 〕Abd El-Hafez YG, Chen CC, Ng SH, Lin CY, Wang HM, Chan SC, et al. Comparison of PET/CT and MRI for the detection of bone marrow invasion in patients with squamous cell carcinoma of the oral cavity. Oral Oncol 2011; 47: 288- 95.

〔22〕Brown T, Banks M, Hughes BGM, Lin C, Kenny LM, Bauer JD. Impact of early prophylactic feeding on long term tube dependency outcomes in patients with head and neck cancer. Oral Oncology 2017; 72: 17-25.

〔23〕Jimi E, Furuta H, Matsuo K, Tominaga K, Takahashi T, Nakanishi O. The cellular and molecular mechanisms of bone invasion by oral squamous cell carcinoma. Oral Diseases 2011; 17: 462-8.

〔24〕Quan J, Elhousiny M, Johnson N, Gao J. Transforming growth factor-β1 treatment of oral cancer induces epithelial-mesenchymal transition and promotes bone invasion via enhanced activity of osteoclasts. Clin Exp Metastasis 2013; 30:659–70.

〔25〕Danilin S, Merkel AR, Johnson JR, Johnson RW, Edwards JR, Sterling JA. Myeloid- derived suppressor cells expand during breast cancer progression and promote tumor-induced bone destruction. Oncoimmunology 2012; 1: 1484-94.

〔26 〕Zhuang J, Zhang J, Lwin ST, Edwards JR, Edwards CM, Mundy GR, et al. Osteoclasts in multiple myeloma are derived from Gr-1+CD11b+Myeloid-Drived suppressor cells. PLOS one 2012; 7: e48871.

〔27〕Fuse H, Tomihara K, Heshiki W, Yamazaki M, Akyu-Takei R, Tachinami H, et al. Enhanced expression of PD-L1 in oral squamous cell carcinoma-derived CD11b+Gr- 1+ cells and its contribution to immunosuppressive activity. Oral Oncology 2016; 59:20-9.

〔28 〕Tanaka K, Jinhua P, Omura K, Azuma M. Multipotency of CD11bhighGr-1+ immature myeloid cells accumulating in oral squamous cell carcinoma-bearing mice. Oral Oncol 2007; 43:586-92.

〔29〕Tomihara K, Fuse H, Heshiki W, Takei R, Zhan B, Arai N, et al. Gemcitabine chemotherapy induces phenotypic alterations of tumor cells that facilitate antitumor T cell responses in a mouse model of oral cancer. Oral Oncol 2014; 50:457-67.

〔30〕Tomihara K, Guo M, Shin T, Sun X, Ludwig SM, Brumlik MJ, et al. Antigen- specific immunity and cross-priming by epithelial ovarian carcinoma-induced CD11b(+)Gr-1(+) cells. J Immunol 2010; 184:6151–60.

〔31〕Mosely SI, Prime JE, Sainson RC, Koopmann JQ, Wang DY, Greenawalt DM, et al. Rational selection of syngeneic preclinical tumor models for immunotherapeutic drug discovery. Cancer Immunol Res 2017; 5:29-41.

〔32〕Pili R, Guo Y, Chang J, Nakanishi H, Martin GR, Passaniti A. Altered angiogenesis underlying age-dependent changes in tumor growth. J Natl Cancer Inst 1994; 86:1303-14.

〔33〕Kreisle RA, Stebler BA, Ershler WB. Effect of host age on tumor-associated angiogenesis in mice. J Natl Cancer Inst 1990; 82:44-7.

〔34〕Ershler WB, Socinski MA, Greene CJ. Bronchogenic cancer, metastases, and aging. J Am Geriatr Soc 1983; 31:673-6.

〔35〕Fisher CJ, Egan MK, Smith P, Wicks K, Millis RR, Fentiman IS. Histopathology of breast cancer in relation to age. Br J Cancer 1997; 75:593-6.

〔36〕Calabrese CT, Adam YG, Volk H. Geriatric colon cancer. Am J Surg 1973; 125:181-4.

〔37〕 Sawant A, Ponnazhagan S. Myeloid-derived suppressor cells as osteoclast progenitors: a novel target for the controlling of osteolytic bone metastasis. Cancer Res 2013; 73:4606-10.

〔38〕Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, et al. Induction and activation of the transcription factor NFATc1(NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Cell 2002; 3: 889-901.

〔39〕Helfrich MH, Nesbitt SA, Dorey EL, Harton MA. Rat osteoclasts adhere to a wide range of RGD(Arg-Gly-Asp) peptide-containing proteins, including the bone sialoproteins and fibronectin, via a β3 integrin. J Bone Miner Res. 1992; 7: 335-43.

〔40〕Reinholt FP, Hultenby K, Oldberg A Heingard D. Osteopontin-a possible anchor of osteoclasts to bone. Proc Natl Acad Sci USA 1990; 87:4473-5.

〔41〕DePinho RA. The age of cancer. Nature 2000; 408:248-54.

〔42〕Cinar D, Tas D. Cancer in the elderly. North Clin Istanb 2015; 2:73-80.

〔43〕Nikolich-Žugich J, Li G, Uhrlaub JL, Renkema KR, Simithey MJ. Age-related changes in CD8 T cell homeostasis and immunity to infection. Semin Immunol 2012; 24:356–64.

〔44 〕McCoy GD, Wynder EL. Etiological and preventive implications in alcohol carcinogenesis. Cancer Res 1979; 39:2844-50.

〔45〕Sturgis EM, Cinciripini PM. Trends in head and neck cancer incidence in relation to smoking prevalence: an emerging epidemic of human papillomavirus-associated cancers? Cancer 2007; 110:1429-35.

〔46〕Montero PH, Patel SG. Cancer of the oral cavity. Surg Oncol Ciln N Am 2015; 24:491-508.

〔47 〕Herndler-Brandstetter D, Landgraf K, Tzankov A, Jenewein B, Brunauer R, Laschober GT, et al. The impact of aging on memory T cell phenotype and function in the human bone marrow. J Leukoc Biol 2012; 91:197-205.

〔48〕Hurez V, Daniel BJ, Sun L, Liu AJ, Ludwig SM, Kious MJ, et al. Mitigating age- related immune dysfunction heightens the efficacy of tumor immunotherapy in aged mice. Cancer Res 2012; 72:2089-99.

〔49〕Padrón Á, Hurez V, Gupta HB, Clark CA, Pandeswara SL, Yuan B, et al. Age effects of distinct immune checkpoint blockade treatments in a mouse melanoma model. Exp Gerontol 2018; 105:146-54.

〔50 〕Effros RB, Walford RL. The immune response of aged mice to influenza: diminished T cell proliferation, interleukin 2 production and cytotoxicity. Cell Immunol 1983; 81:298-305.

〔51〕Jiang J, Anaraki F, Blank KJ, Murasko DM. Cutting edge: T cells from aged mice are resistant to depletion early during virus infection. J Immunol 2003; 171:3353-7.

〔52〕Haynes L, Eaton SM, Burns EM, Rincon M, Swain SL. Inflammatory cytokines overcome age-related defects in CD4 T cell responses in vivo. J Immunol 2004; 172:5194-9.

〔53〕Bloom ET, Umehara H, Bleackley RC, Okumura K, Mostowski H, Babbitt JT. Age-related decrement in cytotoxic T lymphocyte (CTL) activity is associated with decreased levels of mRNA encoded by two CTL-associated serine esterase genes and the perforin gene in mice. Eur J Immunol 1990; 20:2309-16.

〔54〕Paganelli R, Quinti I, Fagiolo U, Cossarizza A, Ortolani C, Guerra E, et al. Changes in circulating B cells and immunoglobulin classes and subclasses in a healthy aged population. Clin Exp Immunol 1992; 90:351-4.

〔55 〕Shurin MR, Shurin GV, Chatta GS. Aging and the dendritic cell system: implications for cancer. Crit Rev Oncol Hematol 2007; 64:90-105.

〔56〕Paula C Motta A, Schmitz C, Nunes CP, Souza AP, Bonorino C. Alterations in dendritic cell function in aged mice: potential implications for immunotherapy design. Biogerontology 2009; 10:13-25.

〔57〕Mocchegiani E, Giacconi R, Cipriano C, Malavolta M. NK and NKT cells in aging and longevity: role of zinc and metallothioneins. J Clin Immunol 2009; 29:416-25.

〔58〕Pietschmann P, Hahn P, Kudlacek S, Thomas R, Peterlik M. Surface markers and transendothelial migration of dendritic cells from elderly subjects. Exp Gerontol 2000; 35:213-24.

〔59〕Renshaw M, Rockwell J, Engleman C, Gewirtz A, Katz J, Sambhara S. Cutting edge: impaired Toll-like receptor expression and function in aging. J Immunol 2002; 169:4697-701.

〔60〕Dejaco C, Duftner C, Schirmer M. Are regulatory T cells linked with aging? Exp Gerontol 2006; 41:339-45.

〔61〕Gregg R, Smith CM, Clark FJ, Dunnion D, Khan N, Chakraverty R, et al. The number of human peripheral blood CD4+ CD25 high regulatory T cells increases with age. Clin Exp Immunol 2005; 140:540-6.

〔62〕Sharma S, Dominguez AL, Lustgarten J. High accumulation of T regulatory cells prevents the activation of immune responses in aged animals. J Immunol 2006; 177:8348-55.

〔63〕Pan XD, Mao YQ, Zhu LJ, Li J, Xie Y, Wang L, et al. Changes of regulatory T cells and Fox P3 gene expression in the aging process and its relationship with lung tumors in humans and mice. Chin Med J (Engl) 2012; 125:2004-11.

〔64〕Grizzle WE, Xu X, Zhang S, Stockard CR, Liu C, Yu S, et al. Age-related increase of tumor susceptibility is associated with myeloid-derived suppressor cell mediated suppression of T cell cytotoxicity in recombinant inbred BXD 12 mice. Mech Aging Dev 2007; 128:672-80.

〔65〕Verschoor CP, Johnstone J, Millar J, Dorrington MG, Habibagahi M, Lelic A, et al. Blood CD33(+)HLA-DR(-) myeloid-derived suppressor cells are increased with age and a history of cancer. J Leukoc Biol 2013; 93:633-7.

〔66〕Bansal-Pakala P, Croft M. Defective T cell priming associated with aging can be rescued by signaling through 4-1BB(CD137). J Immunol 2002; 169:5005-9.

〔67〕Vilain RE, Menzies AM, Wilmott JS, Kakavand H, Madore J, Guminski A, et al. Dynamic changes in PD-L1 expression and immune infiltrates early during treatment predict response to PD-1 blockade in melanoma. Clin Cancer Res 2017; 23:5024-33.

〔68〕Sponass AM, Yang R, Rustad EH, Standal T, Thoresen AS, Dao Vo C, et al. PD1 is expressed on exhausted T cells as well as virus specific memory CD8+ T cells in the bone marrow of myeloma patients. Oncotarget 2018; 9:32024-35.

〔69〕Huang AC, Postow MA, Orlowski RJ, Mick R, Bengsch B, Manne S, et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 2017; 545:60-5.

〔70〕Itzhaki O, Kaptzan T, Skutelsky E, Sinai J, Michowitz M, Siegal A, et al. Age- adjusted antitumoral therapy based on the demonstration of increased apoptosis as a mechanism underlying the reduced malignancy of tumors in the aged. Biochim Biophys Acta 2004; 1688:145-59.

〔71 〕Erchler WB, Moore AL, Shore H, Gamelli RL. Transfer of age-associated restrained tumor growth in mice by old-to-young bone marrow transplantation. Cancer Res 1984; 44:5677-80.

〔72〕Oh J, Magnuson A, Benoist C, Pittet MJ, Weissleder R. Age-related tumor growth in mice is related to integrin α 4 in CD8+ T cells. JCI Insight 2018; 3:e122961.

〔73〕Reed MJ, Karres N, Eyman D, Cruz A, Brekken RA, Plymate S. The effects of aging on tumor growth and angiogenesis are tumor-cell dependent. Int J Cancer 2007; 120:753-60.

〔74〕Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM. Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor- bearing animals and enhances antitumor immune activity. Clin Cancer Res 2005; 11:6713–21.

〔75〕Le HK, Graham L, Cha E, Morales JK, Manjili MH, Bear HD. Gemcitabine directly inhibits myeloid derived suppressor cells in BALB/c mice bearing 4T1 mammary carcinoma and augments expansion of T cells from tumor-bearing mice. Int Immunopharmacol 2009; 9:900–9.

〔76〕Vincent J, Mignot G, Chalmin F, Ladoire S, Bruchard M, Chevriaux A, et al. 5- Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res 2010; 70:3052–61.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る