リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on Abundance and Emission Strengths of Anthropogenic Iron Oxide Aerosols Using Laser-Induced Incandescence Technique」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on Abundance and Emission Strengths of Anthropogenic Iron Oxide Aerosols Using Laser-Induced Incandescence Technique

吉田, 淳 東京大学 DOI:10.15083/0002006045

2023.03.02

概要

Iron-containing aerosols in the atmosphere are considered to play important roles in the Earth’s climate. They absorb solar radiation as black carbon (BC) and brown carbon (BrC) do, resulting in a positive radiative forcing. Irons in aerosols are also an essential nutrient for phytoplankton and their deposition to the surface ocean is considered to affect the carbon cycle through the absorption of carbon dioxide into the ocean. Thus, iron aerosols affect the climate on both short time scales as light-absorbers and long time scales as nutrient sources for the ocean ecosystem.

It has been considered that mineral dust emitted from the arid area is a main component of atmospheric iron aerosols. Recently, the existence of anthropogenic iron aerosols such as fuel combustion has been reported. However, the abundance and behaviors of anthropogenic iron aerosols in the atmosphere, as well as their radiation effects have not been examined due to a lack of reliable observations. In most of the previous studies, iron aerosols were measured by the collection of particles on filers and subsequently analyzed in laboratories. Although these methods provide useful information on the chemical component and shape of iron aerosols, they cannot provide concentrations and size distributions with a sufficiently high time resolution that is required for statistical analyses. As a consequence, emission inventories of anthropogenic aerosols, that are required to evaluate their impacts on the climate, are compiled only by accumulating from individual emission sources (bottom-up method) and they are considered to have significant uncertainties. To improve the emission inventories, reliable and statistically enough observational data that can constrain the emission strength (top- down method) are needed.

In this study, I developed a new technique to measure light-absorbing iron oxide particles (FeOx) including magnetite and hematite using a laser-induced incandescent (LII) technique. In this technique, a mass of individual FeOx particles (170-2100 nm) can be quantified by measuring the incandescence light emitted from the particle in the laser beam. Furthermore, the scattering cross section and the position where the incandescence starts in the laser beam (incandescence onset position) are measured to evaluate the mixing state of FeOx aerosols with other aerosol compounds (volatile or non-volatile) and to determine FeOx chemical components (e.g., magnetite and hematite). From these information one can classify the detected FeOx particles into anthropogenic (combustion) and natural origins (mineral dust). Thus, the developed LII technique has made it possible for the first time to estimate a mass (size), size distribution, and mixing state with a high temporal resolution (1–60 mins) under typical atmospheric conditions.

Using the developed LII technique, in situ measurements of FeOx aerosols were made at Cape Hedo, Okinawa Island in April 2017. Air likely affected by sources over the Asian continent was frequently sampled due to prevailing northwesterlies. Based on the single-particles quantities measured by the LII, most of the observed FeOx aerosols were found to be anthropogenic; a number fraction of mineral dust particles (known as Kosa) was below 10% during this experiment. Temporal variation of FeOx aerosols was well captured and the statistically significant data enabled to obtain clear positive correlations between the mass concentrations of FeOx and BC (R2 = 0.717) and of FeOx and CO (R2 = 0.718) in air originating from China. These correlations indicate that the emission sources of FeOx aerosols are spatially similar to those of BC and CO in China.

In this study, I used the observed slope of the correlation between FeOx and BC (CO) as a scaling factor for global BC (CO) emission data in literature in order to estimate global anthropogenic iron emissions. As a result, the global emission strength of anthropogenic iron aerosols was estimated to be 1.4-3.4 FeTg/yr. This is the first estimate using the top-down method. Uncertainties in these estimates are discussed in this thesis.

In order to understand the abundance of FeOx aerosols in wide-area, I also acquired and analyzed FeOx data in East Asian (area influenced by air from the Asian continental), urban city in Japan, and the Arctic regions. Most of the FeOx aerosols observed in these regions were anthropogenic based on the single-particles quantities measured by the LII. Among all observations, the shapes of FeOx number size distributions are similar. Mass concentrations of FeOx aerosols were 20-50% of those of BC. Furthermore, in all observations, it was found that the FeOx aerosol concentration showed a positive correlation with BC and CO. These facts suggest that the source of anthropogenic FeOx aerosols in the Northern Hemisphere likely spreads over a wide area as well as that of BC and CO.

The new method that I have developed was also applied to estimate FeOx emission sources in urban areas. As a result, the vehicle is suggested to be an important source of anthropogenic FeOx aerosols rather than steel and power plants.

The novel dataset of FeOx aerosols that I obtained in East Asia was used to constrain global model simulation for evaluating the radiative forcing of anthropogenic FeOx aerosols as well as their possible impacts on the iron supply to the ocean. In this simulation, FeOx/BC mass ratio and particle size distribution obtained in the dataset were used to constrain the anthropogenic iron emissions. As a result, an atmospheric burden of anthropogenic iron aerosols was estimated to be approximately 7.7 times that estimated in the previous study. The simulation showed that a level of the radiative forcing of anthropogenic FeOx aerosols can be similar to that of BrC. In addition, the deposition flux of anthropogenic iron to the surface southern ocean was estimated to be 6.5 times of that estimated in the previous study.

To conclude, a series of reliable measurements in this study indicate that most of the light-absorbing FeOx aerosols are anthropogenic origin and they likely play more important roles for the processes related to the climate than previously thought. Further improvement of FeOx measurement techniques are important to reduce uncertainties in quantification of FeOx concentration and size distribution. In addition, further observations including ground and aircraft measurements especially in southern hemisphere are also important to understand the abundance, transport and removal of iron aerosols and their impact on climate.

この論文で使われている画像

参考文献

References Chapter1

Acosta-Martinez, V., Van Pelt, S., Moore-Kucera, J., Baddock, M. C., & Zobeck, T. M. (2015). Microbiology of wind-eroded sediments: Current knowledge and future research directions. Aeolian Research, 18, 99-113.

Buonanno, G., Stabile, L., Avino, L., & Belluso, E. (2011). Chemical, dimensional and morphological ultrafine particle characterization from a waste-to-energy plant, Waste Management, 31(11), 2253-2262, doi:10.1016/j.wasman.2011.06.017

Bond, T., Streets, D., Yarber, K., Nelson, S., Woo, J., & Klimont, Z. (2004), A technology- based global inventory of black and organic carbon emissions from combustion, Journal of Geophysical Research: Atmospheres 1984 2012, 109(D14), doi:10.1029/2003jd003697.

Chen, H., Laskin, A., Baltrusaitis, J., Gorski, C. A., Scherer, M. M., & Grassian, V. H. (2012). Coal fly ash as a source of iron in atmospheric dust. Environmental science & technology, 46(4), 2112-2120.

Cornell, R.M, & Schwertmann, U. (2004). The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, Second Edition, Wiley, 703 pp. doi:10.1002/3527602097

Formenti, P., Caquineau, S., Chevaillier, S., Klaver, A., Desboeufs, K., Rajot, J. L., ... & Briois, V. (2014). Dominance of goethite over hematite in iron oxides of mineral dust from Western Africa: Quantitative partitioning by X-ray absorption spectroscopy. Journal of Geophysical Research: Atmospheres, 119(22), 12-740.

Gillett, D., & Morales, C. (1979). Environmental factors affecting dust emission by wind erosion. Saharan dust, 71-94.

Guieu, C., Bonnet, S., Wagener, T., & Loÿe-Pilot, M. D. (2005). Biomass burning as a source of dissolved iron to the open ocean?. Geophysical Research Letters, 32(19).

Guo, H., & Barnard, A. S. (2013). Naturally occurring iron oxide nanoparticles: morphology, surface chemistry and environmental stability. Journal of Materials Chemistry A, 1(1), 27- 42.

Hansen, J., & Nazarenko, L. (2004). Soot climate forcing via snow and ice albedos, Proceedings of the National Academy of Sciences, 101(2), 423-428, doi:10.1073/pnas.2237157100

Helble, J., Neville, M., & Sarofim, A. F. (1988). Aggregate formation from vaporized ash during pulverized coal combustion. In Symposium (International) on Combustion (Vol. 21, No. 1, pp. 411-417). Elsevier.

Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert J. J., Vu, L., et al. (2018) Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS), Geoscientific Model Development, 11(1), 369-408, doi:10.5194/gmd-11-369-2018.

Hsu, S. C., Wong, G. T., Gong, G. C., Shiah, F. K., Huang, Y. T., Kao, S. J., ... & Hung, C. C. (2010). Sources, solubility, and dry deposition of aerosol trace elements over the East China Sea. Marine Chemistry, 120(1-4), 116-127.

Intergovernmental Panel on Climate Change (IPCC) (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the 5th Assessment Report of the IPCC. Cambridge University Press, Cambridge, UK.

Ito, A. (2013). Global modeling study of potentially bioavailable iron input from shipboard aerosol sources to the ocean, Global Biogeochemical Cycles,27(1), 1-10, doi:10.1029/2012GB004378

Ito, A., G. Lin, & J. Penner (2018), Radiative forcing by light-absorbing aerosols of pyrogenetic iron oxides, Scientific Reports, 8(1), 7347, doi:10.1038/s41598-018-25756-3.

Jickells, T., An, A. S., Anderson, K. K., Baker, A. R., Bergametti, G., Brooks, N., Cao, J. J., Boyd, P. W., et al. (2005). Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate, Science, 308(5718), 67-71, doi:10.1126/science.1105959

Journet, E., Balkanski, Y., & Harrison, S. P. (2014). A new data set of soil mineralogy for dust-cycle modeling. Atmospheric Chemistry and Physics, 14(8), 3801-3816.

Kukutschová, J., Moravec, P., Tomášek, V., Matějka, V., Smolík, J., Schwarz, J., Seidlerová, J., Šafářová, K., & Filip, P. (2011). On airborne nano/micro-sized wear particles released from low-metallic automotive brakes, Environmental Pollution, 159(4), 998- 1006, doi:10.1016/j.envpol.2010.11.036

Kutchko, B., & Kim, A. (2006). Fly ash characterization by SEM–EDS, Fuel, 85(17-18), 2537- 2544, doi:10.1016/j.fuel.2006.05.016

Lafon, S., Sokolik, I. N., Rajot, J. L., Caquineau, S., & Gaudichet, A. (2006). Characterization of iron oxides in mineral dust aerosols: Implications for light absorption. Journal of Geophysical Research: Atmospheres, 111(D21).

Li, W., Xu, L., Liu, X., Zhang, J., Lin, Y., Yao, X., ... & Harrison, R. M. (2017). Air pollution– aerosol interactions produce more bioavailable iron for ocean ecosystems. Science advances, 3(3), e1601749.

Liati, A., Pandurangi, S. S., Boulouchos, K., Schreiber, D., & Dasilva, Y. A. R. (2015). Metal nanoparticles in diesel exhaust derived by in-cylinder melting of detached engine fragments. Atmospheric environment, 101, 34-40.

Linke, C., Möhler, O., Veres, A., Mohácsi, Á., Bozóki, Z., Szabó, G., and Schnaiter, M.: Optical properties and mineralogical composition of different Saharan mineral dust samples: a laboratory study (2006), Atmospheric Chemistry and Physics., 6, 3315-3323, doi:10.5194/acp-6-3315-2006.

Linak, W. P., Miller, C. A., & Wendt, J. O. (2000). Comparison of particle size distributions and elemental partitioning from the combustion of pulverized coal and residual fuel oil. Journal of the Air & Waste Management Association, 50(8), 1532-1544.

Liu, H., Yan, Y., Chang, H., Chen, H., Liang, L., Liu, X., ... & Sun, Y. (2019). Magnetic signatures of natural and anthropogenic sources of urban dust aerosol. Atmospheric Chemistry and Physics, 19(2), 731-745.

Machemer, S. (2004). Characterization of Airborne and Bulk Particulate from Iron and Steel Manufacturing Facilities, Environmental Science & Technology, 38(2), 381-389, doi:10.1021/es020897v

Magiera, T., Jabłońska, M., Strzyszcz, Z., & Rachwal, M. (2011). Morphological and mineralogical forms of technogenic magnetic particles in industrial dusts. Atmospheric Environment, 45(25), 4281-4290.

Martin, J. H., & Fitzwater, S. E. (1988). Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature, 331(6154), 341.

Martin J. H., Gordon R. M., & Fitzwater, S. E. (1991). The case for iron. Limnology and Oceanography, 36(8), 1793-1802. https://doi.org/10.4319/lo.1991.36.8.1793

McElroy, M. W., Carr, R. C., Ensor, D. S., & Markowski, G. R. (1982). Size distribution of fine particles from coal combustion. Science, 215(4528), 13-19.

Menon, S., Hansen, J., Nazarenko, L., & Luo, Y. (2002). Climate effects of black carbon aerosols in China and India, Science, 297(5590), 2250-2253, doi:10.1126/science.1075159

Ming, Y., Ramaswamy, V., & Persad, G. (2010). Two opposing effects of absorbing aerosols on global mean precipitation, Geophysical Research Letter, 37(13), doi:10.1029/2010GL042895

Moosmüller, H., Chakrabarty, R. K., & Arnott, W. P. (2009). Aerosol light absorption and its measurement: A review, Journal of Quantitative Spectroscopy and Radiative Transfer, 110(11), 844–878, doi:10.1016/j.jqsrt.2009.02.035

Myriokefalitakis, S., Daskalakis, N., Mihalopoulos, N., Baker, A. R., Nenes, A., & Kanakidou, M. (2015). Changes in dissolved iron deposition to the oceans driven by human activity: a 3-D global modelling study. Biogeosciences, 12(13), 3973-3992.

Luo, C., Mahowald, N. M., & Del Corral, J. (2003). Sensitivity study of meteorological parameters on mineral aerosol mobilization, transport, and distribution. Journal of Geophysical Research: Atmospheres, 108(D15).

Luo, C., Mahowald, N., Bond, T., Chuang, P., Artaxo, P., Siefert, R., Chen, Y., & Schauer, J. (2008). Combustion iron distribution and deposition, Global Biogeochemical Cycles, 22(1), doi:10.1029/2007GB002964

McElroy, M. W., Carr, R. C., Ensor, D. S., & Markowski, G. R. (1982). Size distribution of fine particles from coal combustion. Science, 215(4528), 13-19.

Myriokefalitakis, S., Daskalakis, N., Mihalopoulos, N., Baker, A. R., Nenes, A., & Kanakidou, M. (2015). Changes in dissolved iron deposition to the oceans driven by human activity: a 3-D global modelling study. Biogeosciences, 12(13), 3973-3992.

Reddy, M. S., Basha, S., Joshi, H. V., & Jha, B. (2005). Evaluation of the emission characteristics of trace metals from coal and fuel oil fired power plants and their fate during combustion. Journal of Hazardous Materials, 123(1-3), 242-249.

Sanderson, P., Su, S. S., Chang, I. T. H., Saborit, J. M., Kepaptsoglou, D. M., Weber, R. J. M., & Harrison, R. (2016). Characterisation of iron-rich atmospheric submicrometre particles in the roadside environment, Atmospheric Environment, 140, 167-175, doi:10.1016/j.atmosenv.2016.05.040

Tewalt, S. J., Belkin, H. E., SanFilipo, J. R., Merrill, M. D., Palmer, C. A., Warwick, P. D., Karlsen, A. W., Finkelman, R. B., and Park, A. J.: Chemical analyses in the World coal quality inventory, version 1: U. S. Geological Survey Open-File Report 20101196, available at: http://pubs.usgs.gov/of/2010/1196/ (last access: 10 March 2015), 2010.

Vassilev, S. V., Baxter, D., Andersen, L. K., & Vassileva, C. G. (2010). An overview of the chemical composition of biomass. Fuel, 89(5), 913-933.

Wang, R., Balkanski, Y., Boucher, O., Bopp, L., Chappell, A., Ciais, P., ... & Tao, S. (2015). Sources, transport and deposition of iron in the global atmosphere. Atmospheric Chemistry and Physics, 15(11), 6247-6270.

Xu, L., Chen, X., Chen, J., Zhang, F., He, C., Zhao, J., & Yin, L. (2012). Seasonal variations and chemical compositions of PM2. 5 aerosol in the urban area of Fuzhou, China. Atmospheric Research, 104, 264-272.

Zhang, X. L., Wu, G. J., Zhang, C. L., Xu, T. L., & Zhou, Q. Q. (2015). What is the real role of iron oxides in the optical properties of dust aerosols? Atmospheric Chemistry and Physics, 15(21), 12159-12177.

References Chapter2

Bedidi, A., & Cervelle, B. (1993). Light scattering by spherical particles with hematite and goethite like optical properties: effect of water impregnation. Journal of Geophysical Research: Solid Earth, 98(B7), 11941-11952.

Deer, W. A., Howie, R. A., & Zussman, J. (1992). An introduction to the rock-forming minerals (Vol. 696). London: Longman.

Fuchs, N. A. (1964). The Mechanics of Aerosols. Oxford: Pergamon

Holman, J. P. (1972). Heat Transfer. New York: McGrawHill

Huffman, D. R., & Stapp, J. L. (1973). Optical measurements on solids of possible interstellar importance. In Interstellar dust and related topics (pp. 297-301). Springer, Dordrecht.

Johnson, P.B., Christy, R.W.: Phys. Rev. B9 (1974) 5056

Liati, A., Pandurangi, S., Boulouchos, K., Schreiber, D., & Dasilva, Y. (2015). Metal nanoparticles in diesel exhaust derived by in-cylinder melting of detached engine fragments, Atmospheric Environment, 101, 34-40, doi:10.1016/j.atmosenv.2014.11.014

Lide, D. R. (2000). CRC Handbook of Chemistry and Physics, 81st ed., CRC Press, Boca Raton, FL, doi:10.1021/ja0048230

Moteki, N., & Kondo, Y. (2010). Dependence of laser-induced incandescence on physical properties of black carbon aerosols: Measurements and theoretical interpretation. Aerosol Science and Technology, 44(8), 663-675.

Moteki, N., Kondo, Y., & Adachi, K. (2014). Identification by single‐particle soot photometer of black carbon particles attached to other particles: Laboratory experiments and ground observations in Tokyo, Journal of Geophysical Research: Atmospheres, 119(2), 1031- 1043, doi:10.1002/2013JD020655

Moteki, N., Adachi, K., Ohata, S., Yoshida, A., Harigaya, T., Koike, M., & Kondo, Y. (2017). Anthropogenic iron oxide aerosols enhance atmospheric heating., Nature Communications, 8, 15329, doi:10.1038/ncomms15329

Muyshondt, A., A. R. McFarland, and N. K. Anand (1996). Deposition of aerosols particles in contraction fittings. Aerosol Sci. Technol. 24:205-216.

Qu, Y., Yang, Y., Zou, Z., Zeilstra, C., Meijer, K., & Boom, R. (2014). Thermal decomposition behavior of fine iron ore particles. ISIJ International, 54(10), 2196-2205.

Schwarz, J. P., Spackman, J. R., Gao, R. S., Watts, L. A., Stier, P., Schulz, M., ... & Fahey, D. W. (2010a). Global-scale black carbon profiles observed in the remote atmosphere and compared to models. Geophysical Research Letters, 37(18).

Schwarz, J. P., Spackman, J. R., Gao, R. S., Perring, A. E., Cross, E., Onasch, T. B., ... & Dubey, M. K. (2010b). The detection efficiency of the single particle soot photometer. Aerosol science and technology, 44(8), 612-628.

Schwarz, J. P., Perring, A. E., Markovic, M. Z., Gao, R. S., Ohata, S., Langridge, J., ... & Fahey, D. W. (2015). Technique and theoretical approach for quantifying the hygroscopicity of black-carbon-containing aerosol using a single particle soot photometer. Journal of Aerosol Science, 81, 110-126.

Shettle, E. P., & Fenn, R. W. (1979). Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties (No. AFGL-TR-79-0214). Air Force Geophysics Lab Hanscom Afb Ma.

Stephens, M., Turner, N., & Sandberg, J. (2003). Particle identification by laser-induced incandescence in a solid-state laser cavity. Applied optics, 42(19), 3726-3736.

Tajima, N. et al. (2011). Mass range and optimized operation of the aerosol particle mass analyzer. Aerosol Science and Technology, 45(2), 196-214.

Thomas, J. W. 1958. J. Air Pollut. Control Assoc. 8:32.

Uno, I., Eguchi, K., Yumimoto, K., Takemura, T., Shimizu, A., Uematsu, M., ... & Sugimoto, N. (2009). Asian dust transported one full circuit around the globe. Nature Geoscience, 2(8), 557.

Wang, Q., Jacob, D. J., Spackman, J. R., Perring, A. E., Schwarz, J. P., Moteki, N., ... & Barrett, S. R. (2014). Global budget and radiative forcing of black carbon aerosol: Constraints from pole-to-pole (HIPPO) observations across the Pacific. Journal of Geophysical Research: Atmospheres, 119(1), 195-206.

Zhang, X. L., Wu, G. J., Zhang, C. L., Xu, T. L., & Zhou, Q. Q. (2015). What’s the real role of iron-oxides in the optical properties of dust aerosols? Atmospheric Chemistry and Physics Discussion, 15(4), 5619-5662, doi:10.5194/acpd-15-5619-2015.

References Chapter3

Adachi, K., Moteki, N., Kondo, Y., & Igarashi, Y. (2016). Mixing states of light-absorbing particles measured using a transmission electron microscope and a single-particle soot photometer in Tokyo, Japan, Journal of Geophysical Research: Atmospheres, 121(15), 9153–9164, doi:10.1002/2016JD025153

Adachi, K., Sedlacek, A. J., Kleinman, L., Chand, D., Hubbe, J. M., & Buseck, P. R. (2018). Volume changes upon heating of aerosol particles from biomass burning using transmission electron microscopy, Aerosol Science and Technology, 52(1), 46-56, DOI: 10.1080/02786826.2017.1373181

Chan, C. K., & Yao, X. (2008). Air pollution in mega cities in China. Atmospheric environment, 42(1), 1-42.

Chen, H., Laskin, A., Baltrusaitis, J., Gorski, C. A., Scherer, M. M., & Grassian, V. H. (2012). Coal fly ash as a source of iron in atmospheric dust., Environmental Science & Technology, 46(4), 2112-20, doi:10.1021/es204102f

Crosson, E. R. (2008). A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor, Applied Physics B, 92(3), 403-408, doi:10.1007/s00340-008-3135-y

Furutani, H., Jung, J., Miura, K., Takami, A., Kato, S., Kajii, Y., & Uematsu, M. (2011). Single‐ particle chemical characterization and source apportionment of iron-containing atmospheric aerosols in Asian outflow, Journal of Geophysical Research: Atmospheres, 116(D18), doi:10.1029/2011JD015867

Hatakeyama, S., Takami, A., Sakamaki, F., Mukai, H., Sugimoto, N., Shimizu, A., & Bandow, H. (2004). Aerial measurement of air pollutants and aerosols during 20–22 March 2001 over the East China Sea, Journal of Geophysical Research: Atmospheres, 109(D13), doi:10.1029/2003JD004271

Hauglustaine, D. A., Brasseur, G. P., Walters, S., Rasch, P. J., Müller J.-F., Emmons, L. K., & Carroll, M. A. (1998). MOZART, a global chemical transport model for ozone and related chemical tracers: 2. Model results and evaluation, Journal of Geophysical Research: Atmospheres, 103(D21), 28291-28335, doi:10.1029/98JD02398

Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert J. J., Vu, L., et al. (2018) Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS), Geoscientific Model Development, 11(1), 369-408, doi:10.5194/gmd-11-369-2018.

Ito, A. (2013). Global modeling study of potentially bioavailable iron input from shipboard aerosol sources to the ocean, Global Biogeochemical Cycles, 27(1), 1-10, doi:10.1029/2012GB004378

Ito, A., G. Lin, & J. Penner (2018), Radiative forcing by light-absorbing aerosols of pyrogenetic iron oxides, Scientific Reports, 8(1), 7347, doi:10.1038/s41598-018-25756-3.

Jones, W. L., & Schroeder, L. C. (1978). Radar backscatter from the ocean: Dependence on surface friction velocity. Boundary-Layer Meteorology, 13(1-4), 133-149.

Li, W., Xu, L., Liu, X., Zhang, J., Lin, Y., Yao, X., Gao, H., Zhang, D., et al. (2017). Air pollution–aerosol interactions produce more bioavailable iron for ocean ecosystems, Science Advances, 3(3), e1601749, doi:10.1126/sciadv.1601749

Liu, C.-M., Yeh, M.-T., Paul, S., Lee, Y.-C., Jacob, D. J., Fu, M., Woo, J.-H., Carmichael, G. R. & Streets, D. G. (2008). Effect of anthropogenic emissions in East Asia on regional ozone levels during spring cold continental outbreaks near Taiwan: A case study, Environmental Modeling & Software, 23(5), 579-591, doi:10.1016/j.envsoft.2007.08.007

Lu, Z., Zhang, Q., & Streets, D. G. (2011): Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010, Atmos. Chem. Phys., 11, 9839-9864, https://doi.org/10.5194/acp-11-9839-2011

Luo, C., Mahowald, N., Bond, T., Chuang, P., Artaxo, P., Siefert, R., Chen, Y., & Schauer, J.(2008). Combustion iron distribution and deposition, Global Biogeochemical Cycles, 22(1), doi:10.1029/2007GB002964

Matsui, H., Mahowald, N., Moteki, N., Hamilton, D., Ohata, S., Yoshida, A., Koike, M., Scanza, R., & Flanner, M. (2018). Anthropogenic combustion iron as a complex climate forcer, Nature Communications, 9(1), 1593, doi:10.1038/s41467-018-03997-0.

Moffet, R., Furutani, H., Rödel, T., Henn, T., Sprau, P., Laskin, A., Uematsu, M., & Gilles, M. (2012). Iron speciation and mixing in single aerosol particles from the Asian continental outflow, Journal of Geophysical Research: Atmospheres, 117(D7), doi:10.1029/2011JD016746

Moteki, N., Adachi, K., Ohata, S., Yoshida, A., Harigaya, T., Koike, M., & Kondo, Y. (2017). Anthropogenic iron oxide aerosols enhance atmospheric heating., Nature Communications, 8, 15329, doi:10.1038/ncomms15329

Oshima, N., Kondo, Y., Moteki, N., Takegawa, N., Koike, M., Kita, K., Matsui, H., Kajino, M., et al. (2012). Wet removal of black carbon in Asian outflow: Aerosol radiative forcing in East Asia (A-FORCE) aircraft campaign, Journal of Geophysical Research: Atmospheres, 117(D3), doi:10.1029/2011JD016552

Qu, Y., Yang, Y., Zou, Z., Zeilstra, C., Meijer, K., & Boom, R. (2014). Thermal decomposition behavior of fine iron ore particles. ISIJ International, 54(10), 2196-2205.

Sanderson, P., Su, S. S., Chang, I. T. H., Saborit, J. M., Kepaptsoglou, D. M., Weber, R. J. M., & Harrison, R. (2016). Characterisation of iron-rich atmospheric submicrometre particles in the roadside environment, Atmospheric Environment, 140, 167-175, doi:10.1016/j.atmosenv.2016.05.040

Seinfeld, J.H., & Pandis, S.N. (2006). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 2nd Edition, John Wiley & Sons, New York, 1152 pp.

Shimizu, A., Sugimoto, N., Matsui, I., Arao, K., Uno, I., Murayama, T., Kagawa, N., Aoki, K., Uchiyama, A., & Yamazaki, A. (2004). Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia, Journal of Geophysical Research: Atmospheres, 109(D19), doi:10.1029/2002JD003253

Takahama, S., Gilardoni, S., & Russell, L. (2008). Single-particle oxidation state and morphology of atmospheric iron aerosols, Journal of Geophysical Research: Atmospheres, 113(D22), doi:10.1029/2008JD009810

Tomikawa, Y., & Sato, K. (2005). Design of the NIPR trajectory model, Polar Meteorology and Glaciology, 19, 120-137.

Wang, R., Balkanski, Y., Boucher, O., Bopp, L., Chappell, A., Ciais, P., Hauglustaine, D., Peñuelas, J., & Tao, S. (2015). Sources, transport and deposition of iron in the global atmosphere, Atmospheric Chemistry and Physics, 15, 6247-6270, doi:10.5194/acp-15- 6247-2015

Weber, R. O. (1999). Remarks on the definition and estimation of friction velocity. Boundary- Layer Meteorology, 93(2), 197-209.

Yoshida, A., Moteki, N., Ohata, S., Mori, T., Tada, R., Dagsson-Waldhauserová, P., & Kondo, Y. (2016). Detection of light-absorbing iron oxide particles using a modified single- particle soot photometer, Aerosol Science and Technology, 50(3), 1-4, doi:10.1080/02786826.2016.1146402

Zellweger, C., Steinbacher, M., & Buchmann, B., (2012). Evaluation of new laser spectrometer techniques for in-situ carbon monoxide measurements, Atmospheric Measurement Techniques, 5(10), 2555-2567, doi:10.5194/amt-5-2555-2012

Zhang, L., Gong, S., Padro, J., & Barrie, L. (2001). A size-segregated particle dry deposition scheme for an atmospheric aerosol module, Atmospheric Environment, 35(3), 549-560, doi:10.1016/s1352-2310(00)00326-5

Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Kilmont Z., Park, I. S., et al. (2009). Asian emissions in 2006 for the NASA INTEX-B mission, Atmospheric Chemistry and Physics, 9(14), 5131-5153, doi:10.5194/acp-9-5131-2009

Yu, D., Zhao, L., Zhang, Z., Wen, C., Xu, M., & Yao, H. (2012). Iron transformation and ash fusibility during coal combustion in air and O2/CO2 medium. Energy & Fuels, 26(6), 3150-3155.

Zhang, X. L., Wu, G. J., Zhang, C. L., Xu, T. L., & Zhou, Q. Q. (2015). What’s the real role of iron-oxides in the optical properties of dust aerosols? Atmospheric Chemistry and Physics Discussion, 15(4), 5619-5662, doi:10.5194/acpd-15-5619-2015.

References Chapter4

Baker, A. R. & Jickells, T. D. (2006) Mineral particle size as a control on aerosol iron solubility. Geophys. Res. Lett. 33, L17608.

Barrie, L. A., Hoff, R. M., & Daggupaty, S. M. (1981). The influence of mid-latitudinal pollution sources on haze in the Canadian Arctic. Atmospheric Environment (1967), 15(8), 1407-1419.

Beine, H. J., Engardt, M., Jaffe, D. A., Hov, Ø., Holme, K., & Stordal, F. (1996). Measurements of NOx and aerosol particles at the NY-Ålesund Zeppelin mountain station on Svalbard: Influence of regional and local pollution sources. Atmospheric Environment, 30(7), 1067-1079.

Chen, H., Laskin, A., Baltrusaitis, J., Gorski, C. A., Scherer, M. M., & Grassian, V. H. (2012). Coal fly ash as a source of iron in atmospheric dust. Environmental science & technology, 46(4), 2112-2120.

Chuang, P. Y., Duvall, R. M., Shafer, M. M. & Schauer J. J. (2005).The origin of water soluble particulate iron in the Asian atmospheric outflow. Geophys. Res. Lett. 32, L07813.

Guieu, C., Bonnet, S., Wagener, T. & Loÿe-Pilot, M.-D. (2005). Biomass burning as a source of dissolved iron to the open ocean? Geophys. Res. Lett. 32, L19608.

Ito, A. (2013). Global modeling study of potentially bioavailable iron input from shipboard aerosol sources to the ocean, Global Biogeochemical Cycles, 27(1), 1-10, doi:10.1029/2012GB004378

Ito, A., G. Lin, & J. Penner (2018), Radiative forcing by light-absorbing aerosols of pyrogenetic iron oxides, Scientific Reports, 8(1), 7347, doi:10.1038/s41598-018-25756-3.

Jacobson, M. Z. (2000). A physically‐based treatment of elemental carbon optics: Implications for global direct forcing of aerosols. Geophysical Research Letters, 27(2), 217-220.

Kondo, Y., Moteki, N., Oshima, N., Ohata, S., Koike, M., Shibano, Y., ... & Kita, K. (2016). Effects of wet deposition on the abundance and size distribution of black carbon in East Asia. Journal of Geophysical Research: Atmospheres, 121(9), 4691-4712.

Li, W., Xu, L., Liu, X., Zhang, J., Lin, Y., Yao, X., Gao, H., Zhang, D., et al. (2017). Air pollution–aerosol interactions produce more bioavailable iron for ocean ecosystems, Science Advances, 3(3), e1601749, doi:10.1126/sciadv.1601749

Luo, C., Mahowald, N., Bond, T., Chuang, P., Artaxo, P., Siefert, R., Chen, Y., & Schauer, J. (2008). Combustion iron distribution and deposition, Global Biogeochemical Cycles, 22(1), doi:10.1029/2007GB002964

Magiera, T., Jabłońska, M., Strzyszcz, Z., & Rachwal, M. (2011). Morphological and mineralogical forms of technogenic magnetic particles in industrial dusts. Atmospheric Environment, 45(25), 4281-4290.

Moteki, N., Adachi, K., Ohata, S., Yoshida, A., Harigaya, T., Koike, M., & Kondo, Y. (2017). Anthropogenic iron oxide aerosols enhance atmospheric heating, Nature Communications, 8, 15329, doi:10.1038/ncomms15329

Ohata, S., Yoshida, A., Moteki, N., Adachi, K., Takahashi, Y., Kurisu, M., & Koike, M. (2018). Abundance of light-absorbing anthropogenic iron oxide aerosols in the urban atmosphere and their emission sources. Journal of Geophysical Research: Atmospheres, 123(15), 8115-8134.

Ohata, S., Kondo, Y., Moteki, N., Mori, T., Yoshida, A., Sinha, P. R., & Koike, M. (2019). Accuracy of black carbon measurements by a filter-based absorption photometer with a heated inlet. Aerosol Science and Technology, 53(9), 1079-1091.

Oshima, N., Kondo, Y., Moteki, N., Takegawa, N., Koike, M., Kita, K., Matsui, H., Kajino, M., et al. (2012). Wet removal of black carbon in Asian outflow: Aerosol Radiative Forcing in East Asia (A-FORCE) aircraft campaign, Journal of Geophysical Research: Atmospheres, 117(D3), doi:10.1029/2011JD016552

Samset, B. H. Myhre, G., Herber, A., Kondo, Y., Li, S. M., Moteki, N., ... & Bauer, S. E. (2014) Modelled black carbon radiative forcing and atmospheric lifetime in AeroCom Phase II constrained by aircraft observations. Atmos. Chem. Phys. 14, 12465-12477.

Sanderson, P., Su, S. S., Chang, I. T. H., Saborit, J. M., Kepaptsoglou, D. M., Weber, R. J. M., & Harrison, R. (2016). Characterisation of iron-rich atmospheric submicrometre particles in the roadside environment, Atmospheric Environment, 140, 167-175, doi:10.1016/j.atmosenv.2016.05.040

Sokolik, I. N., & Toon, O. B. (1999). Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths. Journal of Geophysical Research, 104(D8), 9423-9444.

Ström, J., Umegård, J., Tørseth, K., Tunved, P., Hansson, H. C., Holmén, K., ... & König- Langlo, G. (2003). One year of particle size distribution and aerosol chemical composition measurements at the Zeppelin Station, Svalbard, March 2000–March 2001. Physics and Chemistry of the Earth, Parts A/B/C, 28(28-32), 1181-1190.

Takami, A., Miyoshi, T., Shimono, A., & Hatakeyama, S. (2005). Chemical composition of fine aerosol measured by AMS at Fukue Island, Japan during APEX period. Atmospheric Environment, 39(27), 4913-4924.

Wang, R., Balkanski, Y., Boucher, O., Bopp, L., Chappell, A., Ciais, P., Hauglustaine, D., Peñuelas, J., & Tao, S. (2015). Sources, transport and deposition of iron in the global atmosphere, Atmospheric Chemistry and Physics, 15, 6247-6270, doi:10.5194/acp-15- 6247-2015

Willeke, K., & Whitby, K. T. (1975). Atmospheric aerosols: size distribution interpretation. Journal of the Air Pollution Control Association, 25(5), 529-534.

Willis, M. D., Bozem, H., Kunkel, D., Lee, A. K., Schulz, H., Burkart, J., ... & Abbatt, J. P. (2019). Aircraft-based measurements of High Arctic springtime aerosol show evidence for vertically varying sources, transport and composition. Atmospheric Chemistry and Physics, 19(1), 57-76.

Zhang, X. L., Wu, G. J., Zhang, C. L., Xu, T. L., & Zhou, Q. Q. (2015). What’s the real role of iron-oxides in the optical properties of dust aerosols?, Atmospheric Chemistry and Physics Discussion,15(4), 5619–5662, doi:10.5194/acpd-15-5619-2015.

References Chapter5

Bond, T., Streets, D., Yarber, K., Nelson, S., Woo, J., & Klimont, Z. (2004), A technology- based global inventory of black and organic carbon emissions from combustion, J Geophys Res Atmospheres 1984 2012, 109(D14), doi:10.1029/2003jd003697.

Bonnet, S., & Guieu, C. (2004). Dissolution of atmospheric iron in seawater. Geophysical Research Letters, 31(3).

Chuang, P. Y., Duvall, R. M., Shafer, M. M., & Schauer, J. J. (2005). The origin of water soluble particulate iron in the Asian atmospheric outflow. Geophysical Research Letters, 32(7).

Feng, Y., Ramanathan, V., & Kotamarthi, V. R. (2013). Brown carbon: a significant atmospheric absorber of solar radiation?. Atmospheric Chemistry and Physics, 13(17), 8607-8621.

Flament, P., Mattielli, N., Aimoz, L., Choël, M., Deboudt, K., de Jong, J., ... & Weis, D. (2008). Iron isotopic fractionation in industrial emissions and urban aerosols. Chemosphere, 73(11), 1793-1798.

Ghan, S. J. (2013). Estimating aerosol effects on cloud radiative forcing. Atmospheric Chemistry and Physics, 13(19), 9971-9974.

Guieu, C., Bonnet, S., Wagener, T., & Loÿe‐Pilot, M. D. (2005). Biomass burning as a source of dissolved iron to the open ocean?. Geophysical Research Letters, 32(19).

Hand, J. L., Mahowald, N. M., Chen, Y., Siefert, R. L., Luo, C., Subramaniam, A., & Fung, I. (2004). Estimates of atmospheric‐processed soluble iron from observations and a global mineral aerosol model: Biogeochemical implications. Journal of Geophysical Research: Atmospheres, 109(D17).

Ito, A. (2015). Atmospheric processing of combustion aerosols as a source of bioavailable iron. Environmental Science & Technology Letters, 2(3), 70-75.

Kondo, Y., Ram, K., Takegawa, N., Sahu, L., Morino, Y., Liu, X., & Ohara, T. (2012). Reduction of black carbon aerosols in Tokyo: Comparison of real-time observations with emission estimates. Atmospheric Environment, 54, 242-249. https://doi.org/10.1016/j.atmosenv.2012.02.003

Kutchko, B., & Kim, A. (2006). Fly ash characterization by SEM–EDS, Fuel, 85(17-18), 2537- 2544, doi:10.1016/j.fuel.2006.05.016

Liati, A., Pandurangi, S. S., Boulouchos, K., Schreiber, D., & Dasilva, Y. A. R. (2015). Metal nanoparticles in diesel exhaust derived by in-cylinder melting of detached engine fragments. Atmospheric environment, 101, 34-40.

Luo, C., Mahowald, N., Bond, T., Chuang, P., Artaxo, P., Siefert, R., Chen, Y., & Schauer, J. (2008). Combustion iron distribution and deposition, Global Biogeochemical Cycles, 22(1), doi:10.1029/2007GB002964

Matsui, H., & Mahowald, N. (2017). Development of a global aerosol model using a two- dimensional sectional method: 2. Evaluation and sensitivity simulations. Journal of Advances in Modeling Earth Systems, 9(4), 1887-1920.

Matsui, H., Mahowald, N., Moteki, N., Hamilton, D., Ohata, S., Yoshida, A., Koike, M., Scanza, R. and Flanner, M. (2018). Anthropogenic combustion iron as a complex climate forcer. Nature Communications. 9, 1, 1593. doi:10.1038/s41467-018-03997-0

Myhre, G., Samset, B. H., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., ... & Easter, R. C. (2013). Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmospheric Chemistry and Physics, 13(4), 1853.

Scanza, R. A. (2016). The impact of resolving mineralogy of dust on climate and biogeochemistry. PhD thesis, Cornell University.

Sedwick, P. N., Sholkovitz, E. R., & Church, T. M. (2007). Impact of anthropogenic combustion emissions on the fractional solubility of aerosol iron: Evidence from the Sargasso Sea. Geochemistry, Geophysics, Geosystems, 8(10).

Wang, R., Balkanski, Y., Boucher, O., Bopp, L., Chappell, A., Ciais, P., Hauglustaine, D., Peñuelas, J., & Tao, S. (2015). Sources, transport and deposition of iron in the global atmosphere, Atmospheric Chemistry and Physics, 15, 6247-6270, doi:10.5194/acp-15-6247-2015

References Chapter6

Kondo, Y., Moteki, N., Oshima, N., Ohata, S., Koike, M., Shibano, Y., ... & Kita, K. (2016). Effects of wet deposition on the abundance and size distribution of black carbon in East Asia. Journal of Geophysical Research: Atmospheres, 121(9), 4691-4712.

Luo, C., Mahowald, N., Bond, T., Chuang, P., Artaxo, P., Siefert, R., Chen, Y., & Schauer, J. (2008). Combustion iron distribution and deposition, Global Biogeochemical Cycles, 22(1), doi:10.1029/2007GB002964

参考文献をもっと見る