リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Observational study on spatiotemporal characteristics of hydrometeors and aerosols using multi-platform satellite measurements」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Observational study on spatiotemporal characteristics of hydrometeors and aerosols using multi-platform satellite measurements

菊池, 麻紀 東京大学 DOI:10.15083/0002002706

2021.10.27

概要

雲・降水・エアロゾルなどの大気粒子は放射過程や水循環への影響を通して地球の気候の形成・変化に深く関与している.大気粒子が気候に及ぼすこのような影響は,粒子の相や形状,さらには粒子間の相互作用によって大きく決定づけられるが,これらに関する全球規模での理解は乏しく,気候変化の予測における大きな不確実要因の一つとなっている.この不確実性を軽減するためには,大気粒子の相や形状といった微物理特性およびその時空間特性を全球規模で観測することが必要であり,衛星観測はそのための唯一の有効な手段を与える.

本研究では,近年急速な発展を遂げている衛星観測にもとづいて,大気粒子の微物理特性とその時空間分布に関する観測的研究を行った.すなわち,能動型測器による鉛直次元での観測と次世代静止気象衛星による時間次元での観測を活用して,雲・降水・エアロゾルの微物理特性が様々な時空間スケールでどのように分布・変動しているかを解析するとともに,その知見をもとに,複数の異なる粒子タイプを識別するアルゴリズムを開発した.具体的には,ライダを搭載した衛星観測を用いて雲粒子の相と氷晶粒子の形状の鉛直分布を全球規模で解析し(第3章),それをレーダ観測と組み合わせることで雲・降水粒子タイプを包括的に識別するアルゴリズムを開発した(第4章).さらに,次世代静止気象衛星による高時間分解能の観測を活用して,雲とエアロゾルの時空間変動特性の違いを利用して両者を分離し,エアロゾル推定において雲を除去するアルゴリズムを開発した(第5章).

第3章では,ライダを搭載した CALIPSO 衛星から得られる偏光と後方散乱の観測を用いて,雲粒子タイプの全球解析を行った.この解析では,先行研究によって開発された識別手法に改良を加えることで,未定義だった粒子タイプに適切な氷晶タイプを割り当てるように修正し,解析期間を通年に拡張することで粒子タイプの季節変動の解析が可能となった.また本手法では,広く用いられている NASA の公式プロダクトとは異なり,鉛直に解像された雲の微細な構造に関する情報が得られる.これらの利点を有する本手法を用いた統計解析によって,鉛直に変化する気温や湿度等の環境条件にどのように依存して様々な雲粒子タイプが出現し,それらがどのような季節変動特性を持っているかが全球規模で示された.特に,水平配向した平板状氷晶が年間を通じて気温-15℃付近に集中して出現することが明らかとなり,これは氷晶粒子の気候値的な特徴であることが示唆される.

第4章では,このように識別される雲粒子タイプが形成される微物理条件を調べるために, CALIPSO ライダ観測を CloudSat 衛星によるレーダ観測と複合することで,粒子タイプの気温と粒径に対する依存性を全球的に解析した.この解析によって,雲粒子と氷晶粒子の出現頻度は気温と粒径の両方に系統的に依存することが明らかとなり,従来室内実験で報告されてきた凍結過程に見られた現象と類似の特徴が全球規模でも見られることがわかった.このような全球規模での知見にもとづき,CloudSat と CALIPSO を複合して様々な雲・氷晶・降水粒子タイプを包括的に判別するアルゴリズムを開発した.これは,両衛星による感度が相互補完する性質を利用することで,巻雲から深い対流雲,さらには弱い降水までを包含する様々な雲システムに対して,粒子タイプの詳細な鉛直構造を与えるものである.これにより,従来の衛星研究で得られていた全球の雲出現頻度に対して,雲を構成する粒子タイプの内訳が明らかとなり,従来の衛星では捉えられなかった雲内部の微物理構造に関する情報が得られた.

第5章では,次世代静止気象衛星ひまわり8号による高時間分解能(十分間隔)の観測を用いることで雲・エアロゾルを分離する手法を開発した.従来の受動型測器による雲・エアロゾルの識別はエアロゾル推定における共通課題であったが,エアロゾルと雲の時空間変動特性が顕著に異なることから,高時間分解能の観測を利用することで両者の識別が可能になる.これにより,エアロゾルの遠隔測定において雲の混入を従来に比べて精度良く除去し,エアロゾル物理特性の推定を改善する.実際,この手法にもとづく解析結果を地上観測によって検証したところ,エアロゾル光学的厚さの平均二乗誤差平方根,相関,バイアスのいずれについても定量的な改善が確認された.本手法は,時空間変動特性の違いによって,異なる大気粒子を識別する手法として位置付けられる.

本研究では,衛星地球観測の新しい要素である鉛直次元と時間次元での観測を活用して,大気粒子の微物理特性とその時空間特性を定量的に評価し,それらの知見をもとに新しいアルゴリズムを開発した.これにより,エアロゾル・雲・降水粒子をそれらの微物理特性(粒子の相・形状)や時空間変動特性の違いにもとづいて識別することが可能となり,異なる大気粒子の間の相互作用を調べる上で有用な観測情報が得られると考えられる.今後は,本研究で開発された手法を他の衛星観測に適用するとともに,より多くの航空機観測や地上観測による検証評価を経ることで,大気粒子の四次元的な描像に関するより精度の高い観測情報が得られることが期待される.また,このようにして得られる観測的知見は,数値気候モデルにおける大気粒子の表現方法の検証やそれによる気候予測の不確実性低減にも役立つと考えられる.また,本研究で対象とした鉛直次元と時間次元での観測をさらに複合した解析を行うことで,大気粒子の微物理構造の時空間変化を支配する物理素過程への理解が進展することが期待される.

この論文で使われている画像

参考文献

Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227

Ackerman, A. S., M. P. Kirkpatrck, D. E. Stevens, and O. B. Toon, 2004: The impact of humidity above stratiform clouds on indirect aerosol climate forcing, Nature, 432, 1014–1017, https://doi.org/10.1038/nature03174

Awaji, T., M. Kamaji, M. Ikeda, and Y. Ishida, 2009: Data Assimilation—Innovation to Combine Observation and Experiment With Model, Kyoto, Japan: Kyoto Univ. Press. (in Japanese)

Bauer, P., E. Moreau, F. Chevallier, and U. O’Keefe, 2006: Multiple-scattering microwave radiative transfer for data assimilation applications, Quart. J. Roy. Meteor. Soc., 132, 1259–1281, https://doi.org/10.1256/qj.05.153

Baum, B. A., D. P. Kratz, P. Yang, S. C. Ou, Y. Hu, P. F. Soulen, and S. C. Tsay, 2000: Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS: 1. Data and models, J. Geophys. Res., 105, 11,767–11,780. https://doi.org/10.1029/1999JD901089

Beneditte, A. 2003: CloudSat AN–ECMWF Ancillary Data Interface Control Document.

Bergeron, T., 1935: On the physics of cloud and precipitation, Proc. of the 5th General Assembly of the UGGI, 2, 156–175, UGGI, Lisbon.

Bessho, K., K. Date, M. Hayashi, A. Ikeda, T. Imai, H. Inoue, Y. Kumagai, T. Miyakawa, H. Murata, T. Ohno, A. Okuyama, R. Oyama, Y. Sasaki, Y. Shimazu, K. Shimoji, Y. Sumida, M. Suzuki, H. Taniguchi,H. Tsuchiyama, D. Uesawa, H. Yokota, and R. Yoshida, 2016: An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites, J. Meteorol. Soc. Jpn., 94(2), https://doi.org/10.2151/jmsj.2016-009

Bigg, E. K. 1953: The formation of atmospheric ice crystals by the freezing of droplets, Quart. J. Roy. Meteor. Soc., 79, 510-519, https://doi.org/10.1002/qj.49707934207

Bodas-Salcedo, A., M. J. Webb, S. Bony, H. Chepfer, J. Dufresne, S. A. Klein, Y. Zhang, R. Marchand, J.M. Haynes, R. Pincus, and V. O. John, 2011: COSP: Satellite simulation software for model assessment,Bull. Amer. Meteor. Soc., 92, 1023–1043, https://doi.org/10.1175/2011BAMS2856.1

Bréon, F., and B. Dubrulle, 2004: Horizontally Oriented Plates in Clouds, J. Atmos. Sci., 61, 2888–2898, https://doi.org/10.1175/JAS-3309.1.

Ceccaldi, M., J. Delanoë, R. J. Hogan, N. L. Pounder, A. Protat, and J. Pelon, 2013: From CloudSat- CALIPSO to EarthCare: Evolution of the DARDAR cloud classification and its comparison to airborne radar-lidar observations., J. Geophys. Res., 118, 7962–7981, https://doi.org/10.1002/jgrd.50579

Cesana, G., and H. Chepfer, 2013: Evaluation of the cloud thermodynamic phase in a climate model using CALIPSO‐GOCCP, J. Geophys. Res., 118, 7922–7937, https;//doi.org/10.1002/jgrd.50376

Cesana, G., J. E. Kay, H. Chepfer, J. M. English, and G. DeBoer, 2012: Ubiquitous low-level liquid- containing Arctic clouds: New observations and climate model constraints from CALIPSO-GOCCP, Geophys. Res. Lett., 39, L20804, https://doi.org/10.1029/2012GL053385

Cesana, G., D. E. Waliser, X. Jiang, and J. L. F. Li, 2015: Multimodel evaluation of cloud phase transition using satellite and reanalysis data, J. Geophys. Res., 120, 7871–7892, https://doi.org/10.1002/2014JD022932

Cesana, G., H. Chepfer, D. Winker, B. Getzewich, X. Cai, O. Jourdan, G. Mioche, H. Okamoto, Y. Hagihara,V. Noel, and M. Reverdy, 2016: Using in situ airborne measurements to evaluate three cloud phase products derived from CALIPSO, J. Geophys. Res., 121, 5788–5808, https://doi.org/10.1002/2015JD024334

Cheng, A., K.-M. Xu, Y. Hu, and S. Kato, 2012: Impact of a cloud thermodynamic phase parameterization based on CALIPSO observations on climate simulation, J. Geophys. Res., 117, D09103, https://doi.org/10.1029/2011JD017263

Chepfer, H., P. Goloub, J. Riedi, J. F. De Haan, J. W. Hovenier, and P. H. Flamant, 2001: Ice crystal shapes in cirrus clouds derived from POLDER/ADEOS-1, J. Geophys. Res., 106(D8), 7955–7966, https://doi.org/10.1029/2000JD900285

Christensen, M. W., K. Suzuki, B. Zambri, and G. L. Stephens, 2014: Ship track observations of a reduced shortwave aerosol indirect effect in mixed ‐ phase clouds, Geophys. Res. Lett., 41, 6970–6977, https://doi.org/10.1002/2014GL061320

CloudSat Project, 2008: CloudSat Standard Data Products Handbook, Colorado State University.

Dubovik, O., B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, 2002: Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations,J. Atmos. Sci., 59, 590–608, https://doi.org/10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2

Dubovik, O., Herman, M., Holdak, A., Lapyonok, T., Tanré, D., Deuzé, J. L., Ducos, F., Sinyuk, A., and Lopatin, A., 2011: Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations, Atmos. Meas. Tech., 4, 975-1018, https://doi.org/10.5194/amt-4-975-2011

Eichler, H., A. Ehrlich, M. Wendisch, G. Mioche, J.-F. Gayet, M. Wirth, C. Emde, and A. Minikin, 2009: Influence of ice crystal shape on retrieval of cirrus optical thickness and effective radius: A case study, J. Geophys. Res., 114, D19203, https://doi.org/10.1029/2009JD012215

Engvall, A.-C., R. Krejci, J. Ström, R. Treffeisen, R. Scheele, O. Hermansen, and J. Paatero, 2008: Changes in aerosol properties during spring-summer period in the Arctic tropospheric aerosol during late spring and summer, Tellus, 60B, 392–404, https://doi.org/10.1111/j.1600-0889.2008.00348.x

Eyre, J. R., Kelly, G. A., McNally, A. P., Andersson, E., and Persson, A., 1993: Assimilation of TOVS radiance information through one-dimensional variational analysis, Quart. J. Roy. Meteor. Soc., 119(514), 1427–1463, https://doi.org/10.1002/qj.49711951411

Findeisen, W., 1938: Die Kolloidmeteorologischen Vorgange bei der Niederschlasbildung (Collodial meteorological processes in the formation of precipitation), Meteorol. Z., 55, 121–133.

Fukuda, S., T. Nakajima, H. Takenaka, A. Higurashi, N. Kikuchi, T. Y. Nakajima, and H. Ishida, 2013: New approaches to removing cloud shadows and evaluating the 380 nm surface reflectance for improved aerosol optical thickness retrievals from the GOSAT/TANSO‐Cloud and Aerosol Imager, J. Geophys. Res., 118, 13,520–13,531, https://doi.org/10.1002/2013JD020090

Goloub, P., M. Herman, H. Chepfer, J. Riedi, G. Brogniez, P. Couvert, and G. Se’ze, 2000: Cloud thermodynamical phase classification from the POLDER spaceborne instrument, J. Geophys. Res., 105(D11), 14,747–14,759, https://doi.org/10.1029/1999JD901183

Gordon, H. R., and M. H. Wang, 1994: Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm, Appl. Optics, 33-3, 443-452, https://doi.org/10.1364/AO.33.000443

Hagihara, Y., H. Okamoto, and R. Yoshida, 2010: Development of a combined CloudSat-CALIPSO cloud mask to show global cloud distribution, J. Geophys. Res., 115, D00h33, https://doi.org/10.1029/2009JD012344

Hashino, T., M. Satoh, Y. Hagihara, T. Kubota, T. Matsui, T. Nasuno, and H. Okamoto, 2013: Evaluating cloud microphysics from NICAM against CloudSat and CALIPSO, J. Geophys. Res., 118, 1–20, https://doi.org/10.1002/jgrd.50564

Haynes, J. M., T. S. L’Ecuyer, G. L. Stephens, S. D. Miller, C. Mitrescu, M. B. Wood, and S. Tanelli, 2009: Rainfall retrieval over the ocean with spaceborne W-band radar, J. Geophys. Res., 114, D00A22, https://doi.org/10.1029/2008JD009973

Higurashi, A., and T. Nakajima, 1998: Development of a two-channel aerosol retrieval algorithm on a global scale using NOAA AVHRR, J. Atmos. Sci., 56, 7, 924–941, https://doi.org/10.1175/1520- 0469(1999)056<0924:DOATCA>2.0.CO;2

Hirakata, M., H. Okamoto, Y. Hagihara, T. Hayasaka, and R. Oki, 2014: Comparison of Global and Seasonal Characteristics of Cloud Phase and Horizontal Ice Plates Derived from CALIPSO with MODIS and ECMWF, J. Atmos. Oceanic Technol., 31, 2114–2130, https://doi.org/10.1175/JTECH-D-13-00245.1

Holben B.N., T.F.Eck, I.Slutsker, D.Tanre, J.P.Buis, A.Setzer, E.Vermote, J.A.Reagan, Y.Kaufman, T.Nakajima, F.Lavenu, I.Jankowiak, and A.Smirnov, 1998: AERONET - A federated instrument network and data archive for aerosol characterization, Remote Sens. Environ., 66, 1-16, https://doi.org/10.1016/S0034-4257(98)00031-5

Holz, R. E., S. A. Ackerman, F. W. Nagle, R. Frey, S. Dutcher, R. E. Kuehn, M. A. Vaughan, and B. Baum, 2008: Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP, J. Geophys. Res., 113, D00A19, https://doi.org/10.1029/2008JD009837

Hunt, W. H., D. M. Winker, M. A. Vaughan, K. A. Powell, P. L. Lucker, and C. Weimer, 2009: CALIPSO Lidar Description and Performance Assessment, J. Atmos. Oceanic Technol., 26, 1214–1228, https://dx.doi.org/10.1175/2009JTECHA1223.1

Hsu, N. C., S. C. Tsay, M. D. King, and J. R. Herman, 2004: Aerosol properties over bright-reflecting source regions, IEEE Trans. Geosci. Remote Sens., 42(3), 557–569, https://doi.org/10.1109/TGRS.2004.824067

Hsu, N. C., S. C. Tsay, M. D. King, and J. R. Herman, 2006: Deep Blue retrievals of Asian aerosol properties during ACE-Asia, IEEE Trans. Geosci. Remote Sens., 44(11), 3180–3195, https://doi.org/10.1109/TGRS.2006.879540

Hu, Y., D. Winker, M. Vaughan, B. Lin, A. Omar, C. Trepte, D. Flittner, P. Yang, S.L. Nasiri, B. Baum, R. Holz, W. Sun, Z. Liu, Z. Wang, S. Young, K. Stamnes, J. Huang, and R. Kuehn, 2009: CALIPSO/CALIOP Cloud Phase Discrimination Algorithm, J. Atmos. Oceanic Technol., 26, 2293–2309, https://doi.org/10.1175/2009JTECHA1280.1

Hu, Y., S. Rodier, K. Xu, W. Sun, J. Huang, B. Lin, P. Zhai, and D. Josset, 2010: Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements, J. Geophys. Res., 115, D00H34, https://doi.org/10.1029/2009JD012384

Hunt, W. H., D. M. Winker, M. A. Vaughan, K. A. Powell, P. L. Lucker, and C. Weimer, 2009: CALIPSO Lidar Description and Performance Assessment, J. Atmos. Oceanic Technol., 26, 1214-1228, https://doi.org/10.1175/2009JTECHA1223.1

Ishida, H., and T. Y. Nakajima, 2009: Development of an unbiased cloud detection algorithm for a spaceborne multispectral imager, J. Geophys. Res., 114, D07206, https://doi.org/10.1029/2008JD010710

Ishida, H., T. Y. Nakajima, T. Yokota, N. Kikuchi, and H. Watanabe, 2011: Investigation of GOSAT TANSO-CAI cloud screening ability through an inter-satellite comparison, J. Appl. Meteor. Climatol., 50, 1571-1586, https://doi.org/10.1175/2011JAMC2672.1

Kaufman, Y. J., D. Tanré, L. A. Remer, E. F. Vermote, A. Chu, and B. N. Holben, 1997: Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer, J. Geophys. Res., 102(D14), 17051–17067, https://doi.org/10.1029/96JD03988

Kay, J. E., L. Bourdages, N. B. Miller, A. Morrison, V. Yettella, H. Chepfer, and B. Eaton, 2016a: Evaluating and improving cloud phase in the Community Atmosphere Model version 5 using spaceborne lidar observations, J. Geophys. Res., 121, 4162–4176, https://doi.org/10.1002/2015JD024699

Kay, J.E., C. Wall, V. Yettella, B. Medeiros, C. Hannay, P. Caldwell, and C. Bitz, 2016b: Global Climate Impacts of Fixing the Southern Ocean Shortwave Radiation Bias in the Community Earth System Model (CESM), J. Climate, 29, 4617–4636, https://doi.org/10.1175/JCLI-D-15-0358.1

Kay, J. E., T. L'Ecuyer, A. Pendergrass, H. Chepfer, R. Guzman, and V. Yettella, 2018: Scale‐aware and definition ‐ aware evaluation of modeled near ‐ surface precipitation frequency using CloudSat observations, J. Geophys. Res., 123, 4294–4309, https://doi.org/10.1002/2017JD028213

Kikuchi, M., H. Okamoto, K. Sato, K. Suzuki, G. Cesana, Y. Hagihara, N. Takahashi, T. Hayasaka, and R. Oki, 2017: Development of algorithm for discriminating hydrometeor particle types with a synergistic Use of CloudSat and CALIPSO, J. Geophys. Res., 122, 11,022–11,044. https://doi.org/10.1002/2017JD027113

Kikuchi, M., H. Murakami, K. Suzuki, T. M. Nagao, and A. Higurashi, 2018: Improved Hourly Estimates of Aerosol Optical Thickness Using Spatiotemporal Variability Derived From Himawari-8 Geostationary Satellite, IEEE Trans. Geosci. Remote Sens., 56 (6), 3442-3455, https://doi.org/10.1109/TGRS.2018.2800060

King, M. D., S. Platnick, P. Yang, G. T. Arnold, M. A. Gray, J. C. Riedi, S. A. Ackerman, and K. N. Liou, 2004: Remote sensing of liquid water and ice cloud optical thickness and effective radius in the Arctic: Application of airborne multispectral MAS data, J. Atmos. Oceanic Technol., 21, 857–875, https://doi.org/10.1175/1520-0426(2004)021<0857:RSOLWA>2.0.CO;2

Komurcu, M., T. Storelvmo, I. Tan, U. Lohmann, Y. Yun, J. E. Penner, Y. Wang, X. Liu, and T. Takemura, 2014: Intercomparison of the cloud water phase among global climate models, J. Geophys. Res., 119, 3372– 3400, https://doi.org/10.1002/2013JD021119

Kummerow, C., W. S. Olson, and L. Giglio, 1996: A Simplified Scheme for Obtaining Precipitation and Vertical Hydrometeor Profiles from passive Microwave Sensors, IEEE Trans. Geosci. Remote Sens., 34, 1213-32, https://doi.org/10.1109/36.536538

Kummerow, C., Y. Hongb, W. S. Olsonc, S. Yangc, R. F. Adlerd, J. McCollume, R. Ferraroe, G. Pettyf, D.B. Shina, and T. T. Wilheitg, 2001: The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors, J. Appl. Meteor., 40, 1801-1820,https://doi.org/10.1175/1520- 0450(2001)040<1801:TEOTGP>2.0.CO;2

Lawson, P. R., S. Woods, and H. Morrison, 2015: The microphysics of ice and precipitation development in tropical cumulus clouds, J. Atmos. Sci., 72, 2429-2445, https://doi.org/10.1175/JAS-D-14-0274.1

Leon, D. C., Z. Wang, and D. Liu, 2008: Climatology of drizzle in marine boundary layer clouds based on 1 year of data from CloudSat and CALIPSO, J. Geophys. Res., 113, D00A14, https://doi.org/10.1029/2008JD009835

Levy, R. C., L. A. Remer, D. Tanré, Y. J. Kaufman, C. Ichoku, B. N. Holben, J. M. Livingston, P. B. Russell, and H. Maring, 2003: Evaluation of the Moderate-Resolution Imaging Spectroradiometer (MODIS) retrievals of dust aerosol over the ocean during PRIDE, J. Geophys. Res., 108, D19, 8594, https://doi.org/10.1029/2002JD002460

Libbrecht, K. L., 2005: The physics of snow crystals, Reports on Progress in Physics, 68, 855-895, Institute of Physics Publishing, https://doi.org/10.1088/0034-4885/68/4/R03

Liu, G., 2008: Deriving snow cloud characteristics from CloudSat observations, J. Geophys. Res., 113, D00A09, https://doi.org/10.1029/2007JD009766

Liu, G., and J. A. Curry, 1992: Retrieval of precipitation from satellite microwave measurements using both emission and scattering, J. Geophys. Res., 97, 9959–9974, https://doi.org/10.1029/92JD00289

Liu, G., and J. A. Curry, 1996: Large-scale cloud features during January 1993 in the North Atlantic Ocean as determined from SSM/I and SSM/T2 observations, J. Geophys. Res., 101, D3, 7019–7032, https://doi.org/10.1029/95JD03859

Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles, J. Geophys. Res., 79(15), 2185–2197, https://doi.org/10.1029/JC079i015p02185

Luo, Z., G. Y. Liu, and G. L. Stephens, 2008: CloudSat adding new insight into tropical penetrating convection, Geophys. Res. Lett., 35, L19819, https://doi.org/10.1029/2008GL035330

Mace, G., 2007: Level 2 GEOPROF product process description and interface control document algorithm version 5.3, Colorado State University, 44 pp.

Marchand, R., G. G. Mace, T. Ackerman, and G. Stephens, 2008: Hydrometeor detection using Cloudsat— An Earth ‐ orbiting 94 ‐ GHz cloud radar, J. Atmos. Oceanic Technol., 25, 519–533, https://doi.org/10.1175/2007JTECHA1006.1

Marti, J., and K. Mauersberger, 1993: A survey and new measurements of ice vapor pressure at temperatures between 170 and 250K, Geophys. Res. Lett., 20(5), 363–366, https://doi.org/10.1029/93GL00105

Masunaga, H., T. Matsui, W. Tao, A.Y. Hou, C.D. Kummerow, T. Nakajima, P. Bauer, W.S. Olson, M. Sekiguchi, and T.Y. Nakajima, 2010: Satellite Data Simulator Unit, Bull. Amer. Meteor. Soc., 91, 1625– 1632, https://doi.org/10.1175/2010BAMS2809.1

Matricardi, M., F. Chevallier, G. Kelly, and J. N. Thépaut, 2004: An improved general fast radiative transfer model for the assimilation of radiance observations, Quart. J. Roy. Meteor. Soc., 130, 153–173, https://doi.org/10.1256/qj.02.181

Matrosov, S. Y., T. Uttal, and D. A. Hazen, 2004: Evaluation of radar reflectivity based estimates of water content in stratiform marine clouds, J. Appl. Meteorol., 43, 405–419, https://doi.org/10.1175/1520- 0450(2004)043<0405:EORREO>2.0.CO;2

Matsui, T., J. Santanello, J. J. Shi, W. K. Tao, D. Wu, C. Peters-Lidard, E. Kemp, M. Chin, D. Starr, M. Sekiguchi, and F. Aires, 2014: Introducing multisensor satellite radiance‐based evaluation for regional Earth System modeling, J. Geophys. Res., 119, 8450–8475, https://doi.org/10.1002/2013JD021424

McCoy, D. T., D. L. Hartmann, M. D. Zelinka, P. Ceppi, and D. P. Grosvenor, 2015: Mixed‐phase cloud physics and Southern Ocean cloud feedback in climate models, J. Geophys. Res., 120, 9539–9554, https://doi.org/10.1002/2015JD023603

McGill, M. J., M. A. Vaughan, C. R. Trepte, W. D. Hart, D. L. Hlavka, D. M. Winker, and R. Kuehn, 2007: Airborne validation of spatial properties measured by the CALIPSO lidar, J. Geophys. Res., 112, D20201, https://doi.org/10.1029/2007JD008768

Meneghini, R., T. Iguchi, T. Kozu, L. Liao, K. Okamoto, J. A. Jones, and J. Kwiatkowski, 2000: Use of the Surface Reference Technique for Path Attenuation Estimates from the TRMM Precipitation Radar, J. Appl. Meteor., 39, 2053–2070, https://doi.org/10.1175/1520-0450(2001)040<2053:UOTSRT>2.0.CO;2

Meneghini, R., J. A. Jones, T. Iguchi, K. Okamoto, and J. Kwiatkowski, 2004: A Hybrid Surface Reference Technique and Its Application to the TRMM Precipitation Radar, J. Atmos. Oceanic Technol., 21, 1645– 1658, https://doi.org/10.1175/JTECH1664.1

Miller, S. D., and G. L. Stephens, 2001: CloudSat instrument requirements as determined from ECMWF forecasts of global cloudiness, J. Geophys. Res., 106, 17,713-17,733, https://doi.org/10.1029/2000JD900645

Mitchell, D.L., 1996: Use of Mass- and Area-Dimensional Power Laws for Determining Precipitation Particle Terminal Velocities, J. Atmos. Sci., 53, 1710–1723, https://doi.org/10.1175/1520- 0469(1996)053<1710:UOMAAD>2.0.CO;2

Morrison, H., G. de Boer, G. Feingold, J. Harrington, M. D. Shupe, and K. Sulia, 2012: Resilience of persistent Arctic mixed-phase clouds, Nature Geoscience, v.5, p. 11, https://doi.org/10.1038/ngeo1332

Nakajima, T., and M. Tanaka, 1986: Matrix formulation for the transfer of solar radiation in a plane-parallel scattering atmosphere, J. Quant. Spectrosc. Radiat. Transfer, 35, 13-21, https://doi.org/10.1016/0022- 4073(86)90088-9

Okamoto, H., T. Nishizawa, T. Takemura, H. Kumagai, H. Kuroiwa, N. Sugimoto, I. Matsui, A. Shimizu,S. Emori, A. Kamei, and T. Nakajima, 2007: Vertical cloud structure observed from shipborne radar and lidar: Midlatitude case study during the MR01/K02 cruise of the research vessel Mirai, J. Geophys. Res., 112, D08216, https://doi.org/10.1029/2006JD007628

Okamoto, H., T. Nishizawa, T. Takemura, K. Sato, H. Kumagai, Y. Ohno, N. Sugimoto, A. Shimizu, I. Matsui, and T. Nakajima, 2008: Vertical cloud properties in the tropical western Pacific Ocean: Validation of the CCSR/NIES/FRCGC GCM by shipborne radar and lidar, J. Geophys. Res., 113, D24213, https://doi.org/10.1029/2008JD009812

Okamoto, H., K. Sato, and Y. Hagihara, 2010: Global analysis of ice microphysics from CloudSat and CALIPSO: Incorporation of specular reflection in lidar signals, J. Geophys. Res., 115, D22209, https://doi.org/10.1029/2009JD013383

Ota, Y., A. Higurashi, T. Nakajima, and T. Yokota, 2009: Matrix formulations of radiative transfer including the polarization effect in a coupled atmosphere-ocean system, J. Quant. Spectrosc. Radiat. Transfer, 111, 878-894, https://doi.org/10.1016/j.jqsrt.2009.11.021

Ovarlez, J., P. van Velthoven, G. Sachse, S. Vay, H. Schlager, and H. Ovarlez, 2000: Comparison of water vapor measurements from POLINAT 2 with ECMWF analyses in high-humidity conditions, J. Geophys. Res., 105(D3), 3737–3744, https://doi.org/10.1029/1999JD900954

Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra, IEEE Trans. Geosci. Remote Sens., 41(2), 459–473, https://doi.org/10.1109/TGRS.2002.808301

Probst, P., R. Rizzi, E. Tosi, V. Lucarini, and T. Maestri, 2012: Total cloud cover from satellite observations and climate models, Atmospheric Research, 107, 161-170, https://doi.org/10.1016/j.atmosres.2012.01.005

Protat, A., D. Bouniol, E. J. O’Connor, H. K. Baltink, J. Verlinde, and K. Widener, 2011: CloudSat as a Global Radar Calibrator, J. Atmos. Oceanic Technol., 28, 445–452, https://doi.org/10.1175/2010JTECHA1443.1

Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation, Oxford Univ. Press, 914 pp.

Rädel, G., and K. P. Shine, 2010: Validating ECMWF forecasts for the occurrence of ice supersaturation using visual observations of persistent contrails and radiosonde measurements over England, Quart. J. Roy. Meteor. Soc., 136, 1723-1732, https://doi.org/10.1002/qj.670

Rauber, R. M., and A. Tokay, 1991: An Explanation for the Existence of Supercooled Water at the Top of Cold Clouds, J. Atmos. Sci., 48, 1005-1023, https://doi.org/10.1175/1520- 0469(1991)048<1005:AEFTEO>2.0.CO;2

Riedi, J., B. Marchant, S. Platnick, B. A. Baum, F. Thieuleux, C. Oudard, F. Parol, J. M. Nicolas, and P. Dubuisson, 2010: Cloud thermodynamic phase inferred from merged POLDER and MODIS data, Atmospheric Chemistry and Physics, 10, 11,851–11,865. https://doi.org/10.5194/acp-10-11851-2010

Rodgers, C. D., 2000: Inverse methods for atmospheric sounding: theory and practice, vol. 2 of Atmospheric, Oceanic and Planetary Physics World Scientific, Singapore.

Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics, 3rd ed., 290 pp., Elsevier, New York.

Rossow, W. B., and Y. Zhang, 2010: Evaluation of a Statistical Model of Cloud Vertical Structure Using Combined CloudSat and CALIPSO Cloud Layer Profiles, J. Climate, 23, 6641–6653, https://doi.org/10.1175/2010JCLI3734.1

Sassen, K., and J. Zhu, 2009: A global survey of CALIPSO linear depolarization ratios in ice clouds: Initial findings, J. Geophys. Res., 114, D00H07, https://doi.org/10.1029/2009JD012279

Sassen, K., V. K. Kayetha, and J. Zhu, 2012: Ice cloud depolarization for nadir and off-nadir CALIPSO measurements, Geophys. Res. Lett., 39, L20805, https://doi.org/10.1029/2012GL053116

Shupe, M. D., S. Y. Matrosov, and T. Uttal, 2006: Arctic mixed-phase cloud properties derived from surface- based sensors at SHEBA, J. Atmos. Sci., 63, 697-711, https://doi.org/10.1175/JAS3659.1

Shupe, M. D., 2007: A ground-based multisensor cloud phase classifier, Geophys. Res. Lett., 34, L22809, doi:10.1029/2007GL031008, https://doi.org/10.1029/2007GL031008

Smirnov, A., B. N. Holben, T. F. Eck, O. Dubovik, and I. Slutsker, 2000: Cloud-screening and quality control algorithms for the AERONET database, Remote Sens. Environ., 73(3), 337–349, https://doi.org/10.1016/S0034-4257(00)00109-7

Smirnov, A., B. N. Holben, O. Dubovik, R. Frouin, T. F. Eck, and I. Slutsker, 2003: Maritime component in aerosol optical model derived from Aerosol Robotic Network data, J. Geophys. Res., 108(D1, 4033), https://doi.org/10.1029/2002JD002701

Stephens, G. L., and J. M. Haynes, 2007: Near global observations of the warm rain coalescence process,Geophys. Res. Lett., 34, L20805, https://doi.org/10.1029/2007GL030259

Stephens, G. L., D. G. Vane, R. J. Boain, G. G. Mace, K. Sassen, Z. Wang, A. J. Illingworth, E. J. O’connor,W. B. Rossow, S. L. Durden, S. D. Miller, R. T. Austin, A. Benedetti, C. Mitrescu, and The CloudSat Science Team, 2002: THE CLOUDSAT MISSION AND THE A-TRAIN A New Dimension of Space- Based Observations of Clouds and Precipitation, Bull. Amer. Meteor. Soc., 83, 1771-1790, https://doi.org/10.1175/BAMS-83-12-1771

Stephens, G. L., D. G. Vane, S. Tanelli, E. Im, S. Durden, M. Rokey, D. Reinke, P. Partain, G. G. Mace, R. Austin, T. L’Ecuyer, J. Haynes, M. Lebsock, K. Suzuki, D. Waliser, D. Wu, J. Kay, A. Gettelman, Z. Wang, and R. Marchand, 2008: CloudSat mission: Performance and early science after the first year of operation,J. Geophys. Res.., 113, D00A18, https://doi.org/10.1029/2008JD009982

Storelvmo, T., I. Tan, and A. V. Korolev, 2015: Cloud Phase Changes Induced by CO2 Warming—a Powerful yet Poorly Constrained Cloud-Climate Feedback, Curr. Clim. Change Rep., 1:288–296, https://doi.org/10.1007/s40641-015-0026-2

Sun, W., N. G. Loeb, and P. Yang, 2006: On the retrieval of ice cloud particle shapes from POLDER measurements, Quart. J. Roy. Meteor. Soc., 101, 435–447.

Tan, I., T. Storelvmo, M. D. Zelinka, 2016: Observational constraints on mixed-phase clouds imply higher climate sensitivity, Science, 352, 6282, 224-227, https://doi.org/10.1126/science.aad5300

Tanré, D., Y. J. Kaufman, M. Herman, and S. Mattoo, 1997: Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances, J. Geophys. Res., 102, D14, 16971–16988, https://doi.org/10.1029/96JD03437

Tompkins, A. M., K. Gierens, and G. Radel, 2007: Ice supersaturation in the ECMWF integrated forecast system, Quart. J. Roy. Meteor. Soc., 133, 53-63, https://doi.org/10.1002/qj.14

Trenberth, K.E., and J.T. Fasullo, 2010: Simulation of Present-Day and Twenty-First-Century Energy Budgets of the Southern Oceans, J. Climate, 23, 440–454, https://doi.org/10.1175/2009JCLI3152.1

Twomey, S., 1974: Pollution and the planetary albedo, Atmos. Environ., 8, 1251–1256, https://doi.org/10.1016/0004-6981(74)90004-3

Wang, Z., D. Vane, G. Stephens, and D. Reinke, 2013: Level 2 combined radar and lidar cloud scenario classification product process description and interface control document, version 1.0, 22 pp.

Wang, X., W. Li, Y. Zhu, and B. Zhao, 2013: Improved cloud mask algorithm for FY-3A/VIRR data over the northwest region of China, Atmos. Meas. Tech., 6, 549-563, https://doi.org/10.5194/amt-6-549-2013

WCP-55, 1983: Report of the experts meeting on aerosols and their climate effects, 107 pp., World Meteorological Organization.

Vaughan, M. A., D. M. Winker, and K. A. Powell, 2005: CALIOP algorithm theoretical basis document, part 2, feature detection and layer properties algorithms, PC‐SCI‐202.02, NASA Langley Res. Cent., Hampton, Va.

Voors, R., D. Donovan, J. Acarreta, M. Eisinger, R. Franco, D. Lajas, R. Moyano, F. Pirondini, J. Ramos, and T. Wehr, 2007: ECSIM: the simulator framework for EarthCARE, Proc. SPIE, 6744, 67441Y, https://doi.org/10.1117/12.737738

Yang, J., Wang, Z., Heymsfield, A. J., and Luo, T. 2016: Liquid/Ice Mass Partition in Tropical Maritime Convective Clouds, J. Atmos. Sci., https://doi.org/10.1175/JAS-D-15-0145.1

Yoshida, Y., H. Okamoto, and Y. Hagihara, 2010: Global analysis of cloud phase and ice crystal orientation from Cloud ‐ Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization, J. Geophys. Res., 115, D00h32, https://doi.org/10.1029/2009JD012334

Zhang, J., and J. S. Reid, 2006: MODIS aerosol product analysis for data assimilation: Assessment of over- ocean level 2 aerosol optical thickness retrievals, J. Geophys. Res., 111, D22207, https://doi.org/10.1029/2005JD006898

Zhou, C., P. Yang, A. E. Dessler, Y. Hu, and B. A. Baum, 2012: Study of Horizontally Oriented Ice Crystals with CALIPSO Observations and Comparison with Monte Carlo Radiative Transfer Simulations, J. Appl. Meteor. Clim., 51, 1426-1439, https://doi.org/10.1175/JAMC-D-11-0265.1

Zhou, C., P. Yang, A. E. Dessler, and F. Liang, 2013: Statistical Properties of Horizontally Oriented Plates in Optically Thick Clouds From Satellite Observations, IEEE Trans. Geosci. Remote Sens. Lett.,10, https://doi.org/10.1109/LGRS.2012.2227451

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る