リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Biomimetic design of an α-ketoacylphosphonium-based light-activated oxygenation auxiliary」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Biomimetic design of an α-ketoacylphosphonium-based light-activated oxygenation auxiliary

Oya, Ryoto Ota, Kenji Fuki, Masaaki Kobori, Yasuhiro Higashi, Masahiro Nagao, Kazunori Ohmiya, Hirohisa 京都大学 DOI:10.1039/D3SC03572G

2023.10.14

概要

The biomimetic design of a transition metal complex based on the iron(IV)-oxo porphyrin π-cation radical species in cytochrome P450 enzymes has been studied extensively. Herein, we translate the functions of this iron(IV)-oxo porphyrin π-cation radical species to an α-ketoacyl phosphonium species comprised of non-metal atoms and utilize it as a light-activated oxygenation auxiliary for ortho-selective oxygenation of anilines. Visible light irradiation converts the α-ketoacyl phosphonium species to the excited state, which acts as a transiently generated oxidant. The intramolecular nature of the process ensures high regioselectivity and chemoselectivity. The auxiliary is easily removable. A one-pot protocol is also described.

この論文で使われている画像

参考文献

1 (a) M. Spatzenegger and W. Jaeger, Drug Metab. Rev., 1995,

27, 397; (b) U. M. Zanger and M. Schwab, Pharmacol. Ther.,

2013, 138, 103–141.

2 (a) D. M. Jerina and J. W. Daly, Science, 1974, 185, 573; (b)

J. E. Tomaszewski, D. M. Jerina and J. W. Daly,

Biochemistry, 1975, 14, 2024; (c) K. R. Korzekwa,

D. C. Swinney and W. F. Trager, Biochemistry, 1989, 28,

9019; (d) T. Vannelli and A. B. Hooper, Biochemistry, 1995,

34, 11743; (e) S. P. de Visser and S. Shaik, J. Am. Chem.

Soc., 2003, 125, 7413; (f) C. M. Bathelt, L. Ridder,

A. J. Mulholland and J. N. Harvey, J. Am. Chem. Soc., 2003,

125, 15004; (g) S. Shaik, P. Milko, P. Schyman, D. Usharani

and H. Chen, J. Chem. Theory Comput., 2011, 7, 327; (h)

M.-J. Kang, W. J. Song, A.-R. Han, Y. S. Choi, H. G. Jang

and W. Nam, J. Org. Chem., 2007, 72, 6301; (i) L. T. Burka,

T. M. Plucinski and T. L. Macdonald, Proc. Natl. Acad. Sci.

U. S. A., 1983, 80, 6680; (j) R. Ullrich and M. Hofrichter,

Enzymatic hydroxylation of aromatic compounds, Cell.

Mol. Life Sci., 2007, 64, 271; (k) E. G. Hrycay and

S. M. Bandiera, Arch. Biochem. Biophys., 2012, 522, 71.

3 (a) A. Rajeev, M. Balamurugan and M. Sankaralingam, ACS

Catal., 2022, 12, 9953; (b) L. Cheng, H. Wang, H. Cai,

J. Zhang, X. Gong and W. Han, Science, 2021, 374, 77.

4 M. Asaka and H. Fujii, J. Am. Chem. Soc., 2016, 138, 8048.

5 B. Kolesinska, Cent. Eur. J. Chem., 2010, 8, 1147.

6 (a) C. Chen, Org. Biomol. Chem., 2016, 14, 8641; (b)

M. Oelgemöller and N. Hoffmann, Org. Biomol. Chem.,

2016, 14, 7392; (c) J. A. Dantas, J. T. M. Correia,

M. W. Paix˜

ao and A. G. Corrˆ

ea, ChemPhotoChem, 2019, 3, 506.

7 (a) K. Maruyama, K. Ono and J. Osugi, Bull. Chem. Soc. Jpn.,

1972, 45, 847; (b) J. F. Arnett, G. Newkome, W. L. Mattice and

S. P. McGlynn, J. Am. Chem. Soc., 1974, 96, 4385; (c)

D. Alvarez-Dorta,

E. I. Le´

on, A. R. Kennedy, C. RiescoFagundo and E. Su´

arez, Angew. Chem., Int. Ed., 2008, 47,

8917.

8 (a) T. Osaki, J. Otera and Y. Kawasaki, Bull. Chem. Soc. Jpn.,

1973, 46, 1803; (b) R. West, J. Organomet. Chem., 1965, 3, 314.

© 2023 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Open Access Article. Published on 08 September 2023. Downloaded on 11/1/2023 9:42:16 AM.

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

Edge Article

9 (a) B. D. Palmer, G. W. Rewcastle, G. J. Atwell, B. C. Baguley

and W. A. Denny, J. Med. Chem., 1988, 31, 707; (b)

R. M. Pearson, C.-H. Lim, B. G. McCarthy, C. B. Musgrave

and G. M. Miyake, J. Am. Chem. Soc., 2016, 138, 11399; (c)

S. Kakkar, S. Tahlan, S. M. Lim, K. Ramasamy, V. Mani,

S. A. A. Shah and B. Narasimhan, Chem. Cent. J., 2018, 12, 92.

10 (a) E. Boyland and P. Sims, J. Chem. Soc., 1954, 980; (b)

E. J. Behrman, J. Org. Chem., 1992, 57, 2266; (c)

V. Venkateswarlu, K. A. A. Kumar, S. Balgotra, G. L. Reddy,

M. Srinivas, R. A. Vishwakarma and S. D. Sawant, Chem.–

Eur. J., 2014, 20, 6641; (d) J. Börgel, L. Tanwar, F. Berger

and T. Ritter, J. Am. Chem. Soc., 2018, 140, 16026.

11 Selected reviews on transition-metal catalyzed C(sp2)–H

oxygenation of arenes, see(a) D. A. Alonso, C. Najera,

I. M. Pastor and M. Yus, Chem.–Eur. J., 2010, 16, 5274; (b)

T. W. Lyons and M. S. Sanford, Chem. Rev., 2010, 110,

1147; (c) D. Saha, P. Das, P. Biswas and J. Guin, Chem.–

Asian J., 2019, 14, 4534; (d) S. Mandal, T. Bera, G. Dubey,

J. Saha and J. K. Laha, ACS Catal., 2018, 8, 5085; (e)

Z. Iqbal, A. Joshi and S. Ranjan De, Adv. Synth. Catal.,

2020, 362, 5301.

12 (a) G. Shan, X. Yang, L. Ma and Y. Rao, Angew. Chem., Int. Ed.,

2012, 51, 13070; (b) K. Padala and M. Jeganmohan, Chem.

Commun., 2013, 49, 9651; (c) X. Yang, G. Shan and Y. Rao,

Org. Lett., 2013, 15, 2334; (d) C. He, X. Fan, M. Ji, X. Sun,

W. Zhang, X. Zhu, Z. Sun and W. Chu, Tetrahedron Lett.,

2022, 112, 154225.

13 The slow reaction rates observed in 2c, 2l and 2m is

rationalized that fast back electron transfer from a radical

© 2023 The Author(s). Published by the Royal Society of Chemistry

Chemical Science

14

15

16

17

anion of a-ketoacylphosphonium to a radical cation of

aniline moiety would inhibit the following C–O bond

formation. These results supported SET-involved pathway

in the excited state over O radical addition-involved one.

The related reference, seeK. Ohkubo, K. Hirose and

S. Fukuzumi, Chem.–Eur. J., 2015, 21, 2855.

(a) E. Anders and F. Markus, Chem. Ber., 1989, 122, 113; (b)

Z. Deng, J.-H. Lin and J.-C. Xiao, Nat. Commun., 2016, 7,

10337.

T. Fujiwara and D. O'Hagan, J. Fluorine Chem., 2014, 167, 16.

C. Yuan, Y. Liang, T. Hernandez, A. Berriochoa, K. N. Houk

and D. Siegel, Nature, 2013, 499, 192.

We estimated that the preferential formation of 5y over 5y′

could be rationalized by the different rate of back electron

transfer on the radical ion pair. Based on the mechanism

involving charge transfer (Fig. 1B, bottom), single electron

transfer from more electron rich p-anisole moiety to aketoacylphosphonim moiety preferentially occurs to form

the radical ion. In the radical ion species, back electron

transfer from a-ketoacylphosphonim radical anion to the

p-anisole radical cation might be fast because the

corresponding electron transfer would be placed in the

vertex of Marcus’s parabola. This is same phenomenon

discussed in note 13. In contrast, back electron transfer

from radical cations of phenyl ring would be slow enough

to complete C–O bond formation of the radical ion

species. Therefore, 5y would be obtained as a major product.

Chem. Sci., 2023, 14, 10488–10493 | 10493

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る