リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「円管流路内部におけるゲル化反応を伴う流れの流動輸送特性 (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

円管流路内部におけるゲル化反応を伴う流れの流動輸送特性 (本文)

山口, 雅己 慶應義塾大学

2020.03.23

概要

液体の輸送・反応・拡散現象は自然界,産業分野で数多く見られる現象であるため,古くから研究対象 1,2 とされてきた.Figure 1.1 に流体力学の研究者 J. M. Ottino によって執筆された ”Mixing, Chaotic Advection and Turbulence”より作成した,液体の混合問題が重要である研究分野の代表長さおよびレイノルズ数の関係を示す.液体の輸送・反応は石油精製などの化学プラント,内燃機関などの動力機器,食品製造工程,医療機器内部での製薬過程等の産業分野で数多く利用されており,輸送・反応過程の効率を向上させることは経済的・環境的にも重要な意味を持っている.特に,化学工学分野における反応器内部での流動現象,医学分野における血管内部での輸送現象,食品工学で用いる撹拌槽内部の流動,バイオエンジニアリング等の分野においては作動流体に高粘性流体や高分子溶液を用いるため,水や気体に比べて粘度が非常に大きい.そのため,流れの状態を乱流にするのに大きな動力を必要とするので,乱流状態にするのが困難であり,必然的に流れは層流状態になる.以上より赤い実線で囲った分野では層流における流体挙動,分子拡散過程の解明や化学反応過程の解析が必要とされている.特に,近年‘ゲル’に注目が集まっている.ゲルは組成として液体を多量に持ちながらも流動性を失った物質であり,生物体の組織や食品などを構成している.また,保水性その他の種々の機能の点から医療,食品等の数多くの分野での利用が提案されている.そのため,ゲルを作製する際のプロセス開発やゲル化反応の効率の向上が求められている.ゲルが医療,食品分野での利用が進められている点を考慮すると,層流状態でのゲル化反応を伴う流体挙動およびゲル化反応過程の解明が重要である.しかしゲル化反応を伴う場合での流動・輸送・反応現象に関する研究や報告は限られている.

ゲル化反応を伴う流動・反応現象の解明は近年開発が進められているマイクロ流路への応用においても価値を持つ.マイクロスケールの流路を用いたゲルの合成方法が提案されており,その際にはゲルが持つ特徴の一つである粘弾性特性が流路内部でどのように作用するかを解明する必要がある.しかしながら,ゲルに関する研究は分子構造を変化させた際の材料特性や物性制御に着目した研究や報告については数多くあるが,ゲル化反応を対象とした流路内部での流動特性に関しては研究例が少なく,明らかになっていない.これはゲル自身が持つ粘弾性流体としての複雑な挙動によるものであると考えられる.

以上から,本論文では工学や産業分野において重要な役割を果たすことが期待されているゲルに着目し,円管流路内でのゲル化反応を伴う流動・輸送現象について検討を加える.

この論文で使われている画像

参考文献

1. Ottino, J. Mixing, chaotic advection, and turbulence. Annu. Rev. Fluid Mech. 22, 207–253 (1990).

2. Homsy, G. Viscous fingering in porous media. Annu. Rev. Fluid Mech. 19, 271–311 (1987).

3. Ma, S., Yu, B., Pei, X. & Zhou, F. Structural hydrogels. Polymer (Guildf). 98, 516–535 (2016).

4. Yu, L. & Ding, J. Injectable hydrogels as unique biomedical materials. Chem. Soc. Rev. 37, 1473–81 (2008).

5. Okada, M. et al. Biocompatible nanostructured solid adhesives for biological soft tissues. Acta Biomater. 57, 404–413 (2017).

6. Komatsu, S., Nagai, Y., Naruse, K. & Kimata, Y. The neutral self-assembling peptide hydrogel SPG-178 as a topical hemostatic agent. PLoS One 9, 3–10 (2014).

7. Shah, R. K. et al. Designer emulsions using microfluidics. Materials Today 11, 18–27 (2008).

8. Peppas, N. A., Keys, K. B., Torres-Lugo, M. & Lowman, A. M. Poly(ethylene glycol)-containing hydrogels in drug delivery. J. Control. Release 62, 81–87 (1999).

9. Kamoun, E. A., Kenawy, E. R. S. & Chen, X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res. 8, 217–233 (2017).

10. Wu, H. Da et al. Development of a chitosan-polyglutamate based injectable polyelectrolyte complex scaffold. Carbohydr. Polym. 85, 318–324 (2011).

11. 作花済夫. ゾル-ゲル法のナノテクノロジーへの応用. (シーエムシー出版, 2005).

12. Natali, I. et al. Structural and mechanical properties of ‘peelable’ organoaqueous dispersions with partially hydrolyzed poly(vinyl acetate)-borate networks: Applications to cleaning painted surfaces. Langmuir 27, 13226–13235 (2011).

13. Riedo, C., Caldera, F., Poli, T. & Chiantore, O. Poly(vinylalcohol)-borate hydrogels with improved features for the cleaning of cultural heritage surfaces. Herit. Sci. 3, 1–11 (2015).

14. Weissenberg, K. A continuum theory of rheological phenomena. Nature 159, 310 (1947).

15. 吉田潤一. フロー・マイクロ合成 ―基礎から実際の合成・製造まで―. (化学同人, 2014).

16. Ghanem, A., Lemenand, T., Della Valle, D. & Peerhossaini, H. Static mixers: Mechanisms, applications, and characterization methods - A review. Chem. Eng. Res. Des. 92, 205–228 (2014).

17. Thakur, R. K., Vial, C., Nigam, K. D. P., Nauman, E. B. & Djelveh, G. Static mixers in the process industries - a review. Chem. Eng. Res. Des. 81, 787–826 (2003).

18. Belyaeva, E., Valle, D. Della, Neufeld, R. J. & Poncelet, D. New approach to the formulation of hydrogel beads by emulsification/ thermal gelation using a static mixer. Chem. Eng. Sci. 59, 2913–2920 (2004).

19. Tajima, H., Yoshida, Y., Abiko, S. & Yamagiwa, K. Size adjustment of spherical temperature- sensitive hydrogel beads by liquid – liquid dispersion using a Kenics static mixer. Chem. Eng. J. 156, 479–486 (2010).

20. Hozumi, T., Ohta, S. & Ito, T. Analysis of the calcium alginate gelation process using a Kenics static mixer. Ind. Eng. Chem. Res. 54, 2099–2107 (2015).

21. Pratten, D. H. & Craig, R. G. Wettability of a hydrophilic addition silicone impression material. J. Prosthet. Dent. 61, 197–202 (1989).

22. Johnson, G. H., Lepe, X. & Aw, T. C. The effect of surface moisture on detail reproduction of elastomeric impressions. J. Prosthet. Dent. 90, 354–364 (2003).

23. Chao, H. H. & Torchiana, D. F. BioGlue: Albumin/glutaraldehyde sealant in cardiac surgery. J. Card. Surg. 18, 500–503 (2003).

24. Tansley, P., Al-Mulhim, F., Lim, E., Ladas, G. & Goldstraw, P. A prospective, randomized, controlled trial of the effectiveness of BioGlue in treating alveolar air leaks. J. Thorac. Cardiovasc. Surg. 132, 105–112 (2006).

25. Grundke, K., Michel, S., Knispel, G. & Grundler, A. Wettability of silicone and polyether impression materials: Characterization by surface tension and contact angle measurements. Colloids Surfaces A Physicochem. Eng. Asp. 317, 598–609 (2008).

26. Ong, C. L. & Thome, J. R. Macro-to-microchannel transition in two-phase flow: Part 2 Flow boiling heat transfer and critical heat flux. Exp. Therm. Fluid Sci. 35, 873–886 (2011).

27. Kashid, M. N., Kowaliński, W., Renken, A., Baldyga, J. & Kiwi-Minsker, L. Analytical method to predict two-phase flow pattern in horizontal micro-capillaries. Chem. Eng. Sci. 74, 219–232 (2012).

28. Fu, T., Wei, L., Zhu, C. & Ma, Y. Flow patterns of liquid-liquid two-phase flow in non- Newtonian fluids in rectangular microchannels. Chem. Eng. Process. Process Intensif. 91, 114– 120 (2015).

29. Jovanović, J. et al. Liquid-liquid slug flow: Hydrodynamics and pressure drop. Chem. Eng. Sci. 66, 42–54 (2011).

30. Kashid, M. N. & Agar, D. W. Hydrodynamics of liquid-liquid slug flow capillary microreactor: Flow regimes, slug size and pressure drop. Chem. Eng. J. 131, 1–13 (2007).

31. Tsaoulidis, D., Dore, V., Angeli, P., Plechkova, N. V & Seddon, K. R. Flow patterns and pressure drop of ionic liquid-water two-phase flows in microchannels. Int. J. Multiph. Flow 54, 1–10 (2013).

32. Zhao, C. X., He, L., Qiao, S. Z. & Middelberg, A. P. J. Nanoparticle synthesis in microreactors. Chem. Eng. Sci. 66, 1463–1479 (2011).

33. Wang, K. & Luo, G. Microflow extraction: A review of recent development. Chem. Eng. Sci. 169, 18–33 (2017).

34. Porta, R., Benaglia, M. & Puglisi, A. Flow chemistry: Recent developments in the synthesis of pharmaceutical products. Organic Process Research and Development 20, 2–25 (2016).

35. Wang, K., Li, L., Xie, P. & Luo, G. Liquid-liquid microflow reaction engineering. Reaction Chemistry and Engineering 2, 611–627 (2017).

36. Jensen, K. F. Flow chemistry—Microreaction technology comes of age. AIChE J. 63, 858–869 (2017).

37. Hoffmann, M., Schlüter, M. & Räbiger, N. Experimental investigation of liquid-liquid mixing in T-shaped micro-mixers using μ-LIF and μ-PIV. Chem. Eng. Sci. 61, 2968–2976 (2006).

38. Woldemariam, M. et al. Mixing performance evaluation of additive manufactured milli-scale reactors. Chem. Eng. Sci. 152, 26–34 (2016).

39. Hessel, V., Löwe, H. & Schönfeld, F. Micromixers - A review on passive and active mixing principles. Chem. Eng. Sci. 60, 2479–2501 (2005).

40. Aubin, J., Ferrando, M. & Jiricny, V. Current methods for characterising mixing and flow in microchannels. Chem. Eng. Sci. 65, 2065–2093 (2010).

41. Waheed, S. et al. 3D printed microfluidic devices: Enablers and barriers. Lab on a Chip 16, 1993–2013 (2016).

42. Yao, X., Zhang, Y., Du, L., Liu, J. & Yao, J. Review of the applications of microreactors. Renew. Sustain. Energy Rev. 47, 519–539 (2015).

43. Aoki, N. & Mae, K. Effects of channel geometry on mixing performance of micromixers using collision of fluid segments. Chem. Eng. J. 118, 189–197 (2006).

44. Viktorov, V., Mahmud, M. R. & Visconte, C. Design and characterization of a new H-C passive micromixer up to Reynolds number 100. Chem. Eng. Res. Des. 108, 152–163 (2016).

45. Siconolfi, L., Fani, A., Camarri, S. & Salvetti, M. V. Effect of geometry modifications on the engulfment in micromixers: Numerical simulations and stability analysis. Eur. J. Mech. B/Fluids 55, 360–366 (2016).

46. Song, H., Chen, D. L. & Ismagilov, R. F. Reactions in droplets in microfluidic channels. Angew. Chemie - Int. Ed. 45, 7336–7356 (2006).

47. Yun, J. et al. Microchannel liquid-flow focusing and cryo-polymerization preparation of supermacroporous cryogel beads for bioseparation. J. Chromatogr. A 1247, 81–88 (2012).

48. Wang, W., Zhang, M. J. & Chu, L. Y. Functional polymeric microparticles engineered from controllable microfluidic emulsions. Acc. Chem. Res. 47, 373–384 (2014).

49. Wyss, H. M., Blair, D. L., Morris, J. F., Stone, H. A. & Weitz, D. A. Mechanism for clogging of microchannels. Phys. Rev. E 74, 1–4 (2006).

50. Hartman, R. L., Naber, J. R., Zaborenko, N., Buchwald, S. L. & Jensen, K. F. Overcoming the challenges of solid bridging and constriction during Pd-catalyzed C-N bond formation in microreactors. Org. Process Res. Dev. 14, 1347–1357 (2010).

51. Wang, P. et al. Droplet micro-reactor for internal gelation to fabricate ZrO 2 ceramic microspheres. J. Am. Ceram. Soc. 7, 1–7 (2016).

52. Morgan, R. G., Markides, C. N., Hale, C. P. & Hewitt, G. F. Horizontal liquid-liquid flow characteristics at low superficial velocities using laser-induced fluorescence. Int. J. Multiph. Flow 43, 101–117 (2012).

53. Rosas, L. M. M. et al. Measurements of horizontal three-phase solid-liquid-gas slug flow: Influence of hydrate-like particles on hydrodynamics. AIChE J. 64, 2864–2880 (2018).

54. Ahmed, S. A. & John, B. Liquid – Liquid horizontal pipe flow – A review. J. Pet. Sci. Eng. 168, 426–447 (2018).

55. Bandara, T., Nguyen, N. T. & Rosengarten, G. Slug flow heat transfer without phase change in microchannels: A review. Chemical Engineering Science 126, 283–295 (2015).

56. Burns, J. R. & Ramshaw, C. The intensification of rapid reactions in multiphase systems using slug flow in capillaries. Lab Chip 1, 10–15 (2001).

57. Li, Y. et al. Geometric optimization of liquid-liquid slug flow in a flow-focusing millifluidic device for synthesis of nanomaterials. Chem. Eng. J. 217, 447–459 (2013).

58. Xu, C. & Xie, T. Review of microfluidic liquid-liquid extractors. Industrial & Engineering Chemistry Research 56, 7593–7622 (2017).

59. Raj, R., Mathur, N. & Buwa, V. V. Numerical simulations of liquid-liquid flows in microchannels. in Industrial and Engineering Chemistry Research 49, 10606–10614 (2010).

60. Ramji, S., Rakesh, A. & Pushpavanam, S. Modelling mass transfer in liquid-liquid slug flow in a microchannel. Chem. Eng. J. 280–291 (2019).

61. Elvira, K. S., Casadevall i Solvas, X., Wootton, R. C. R. & de Mello, A. J. The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat. Chem. 5, 905–15 (2013).

62. Shang, L., Cheng, Y. & Zhao, Y. Emerging droplet microfluidics. Chem. Rev. 117, 7964–8040 (2017).

63. Capretto, L., Carugo, D., Mazzitelli, S., Nastruzzi, C. & Zhang, X. Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications. Adv. Drug Deliv. Rev. 65, 1496–1532 (2013).

64. Brauner, N. On the relations between two-phase flows under reduced gravity and earth experiment. Int. Commun. Heat Mass Transf. 17, 271–281 (1990).

65. Shimanouchi, T. et al. Chemical conversion and liquid–liquid extraction of 5- hydroxymethylfurfural from fructose by slug flow microreactor. AIChE J. 62, 2135–2143 (2016).

66. Sotowa, K. I. Fluid behavior and mass transport characteristics of gas-liquid and liquid-liquid flows in microchannels. J. Chem. Eng. Japan 47, 213–224 (2014).

67. Aoki, N., Tanigawa, S. & Mae, K. A new index for precise design and advanced operation of mass transfer in slug flow. Chem. Eng. J. 167, 651–656 (2011).

68. Li, S., Gross, G. A., Günther, P. M. & Köhler, J. M. Hydrothermal micro continuous-flow synthesis of spherical, cylinder-, star- and flower-like ZnO microparticles. Chem. Eng. J. 167, 681–687 (2011).

69. Zhao, Y., Chen, G. & Yuan, Q. Liquid-liquid two-phase flow patterns in a rectangular microchannel. AIChE J. 52, 4052–4060 (2006).

70. Kashid, M. N., Renken, A. & Kiwi-Minsker, L. CFD modelling of liquid-liquid multiphase microstructured reactor: Slug flow generation. Chem. Eng. Res. Des. 88, 362–368 (2010).

71. Kashid, M. N. et al. Internal circulation within the liquid slugs of a liquid-liquid slug-flow capillary microreactor. Ind. Eng. Chem. Res. 44, 5003–5010 (2005).

72. Kashid, M. & Kiwi-Minsker, L. Quantitative prediction of flow patterns in liquid-liquid flow in micro-capillaries. Chem. Eng. Process. Process Intensif. 50, 972–978 (2011).

73. Zhang, Q., Liu, H., Zhao, S., Yao, C. & Chen, G. Hydrodynamics and mass transfer characteristics of liquid–liquid slug flow in microchannels: The effects of temperature, fluid properties and channel size. Chem. Eng. J. 358, 794–805 (2019).

74. Tabeling, P., Zocchi, G. & Libchaber, A. An experimental study of the Saffman-Taylor instability. J. Fluid Mech. 177, 67–82 (1987).

75. Balasubramaniam, R., Rashidnia, N., Maxworthy, T. & Kuang, J. Instability of miscible interfaces in a cylindrical tube. Phys. Fluids 17, 1–11 (2005).

76. D’Olce, M., Martin, J., Rakotomalala, N., Salin, D. & Talon, L. Pearl and mushroom instability patterns in two miscible fluids’ core annular flows. Phys. Fluids 20, (2008).

77. Soori, T. & Ward, T. Stable and unstable miscible displacement of a shear-thinning fluid at low Reynolds number. Phys. Fluids 30, 103101 (2018).

78. Podgorski, T., Sostarecz, M. C., Zorman, S. & Belmonte, A. Fingering instabilities of a reactive micellar interface. Phys. Rev. E 76, 1–6 (2007).

79. Nagatsu, Y., Hayashi, A., Ban, M., Kato, Y. & Tada, Y. Spiral pattern in a radial displacement involving a reaction-producing gel. Phys. Rev. E 78, 1–6 (2008).

80. Niroobakhsh, Z., Litman, M. & Belmonte, A. Flow instabilities due to the interfacial formation of surfactant-fatty acid material in a Hele-Shaw cell. Phys. Rev. E 96, (2017).

81. Wagatsuma, S., Higashi, T., Sumino, Y. & Achiwa, A. Pattern of a confined chemical garden controlled by injection speed. Phys. Rev. E 95, 1–7 (2017).

82. Balog, E. et al. Influence of microscopic precipitate structures on macroscopic pattern formation in reactive flows in a confined geometry. Phys. Chem. Chem. Phys. 21, 2910–2918 (2019).

83. Hurst, G. A., Bella, M. & Salzmann, C. G. The rheological properties of poly(vinyl alcohol) gels from rotational viscometry. J. Chem. Educ. 92, 940–945 (2015).

84. Briscoe, B. & Luckham, P. The effects of hydrogen bonding upon the viscosity of aqueous poly(vinyl alcohol) solutions. Polymer (Guildf). 41, 3851–3860 (2000).

85. 兪善昊,樋口尚孝,藤岡沙都子,植田利久. ノンエレメントミキサーの対流混合促進過程. 化学工学論文集 35, 589–595 (2009).

86. Fernandez, J. & Homsy, G. M. Viscous fingering with chemical reaction: Effect of in-situ production of surfactants. J. Fluid Mech. 480, 267–281 (2003).

87. Yao, C., Liu, Y., Xu, C., Zhao, S. & Chen, G. Formation of liquid–liquid slug flow in a microfluidic T-junction: Effects of fluid properties and leakage flow. AIChE J. 64, 346–357 (2018).

88. Nadler, M. & Mewes, D. The effect of gas injection on the flow of immiscible liquids in horizontal pipes. Chem. Eng. Technol. 18, 156–165 (1995).

89. Mclaughlin, K. W., Wyffels, N. K., Jentz, A. B. & Keenan, M. V. The gelation of poly(vinyl alcohol) with Na2B4O7・10H2O:Killing slime. J. Chem. Educ. 74, (1997).

90. Lu, B. et al. One-pot assembly of microfibrillated cellulose reinforced PVA-borax hydrogels with self-healing and pH-responsive properties. ACS Sustain. Chem. Eng. 5, 948–956 (2017).

91. Nagatsu, Y. & Ueda, T. Analytical study of effects of finger-growth velocity on reaction characteristics of reactive miscible viscous fingering by using a convection-diffusion-reaction model. Chem. Eng. Sci. 59, 3817–3826 (2004).

92. Nagatsu, Y., Ishii, Y., Tada, Y. & De Wit, A. Hydrodynamic fingering instability induced by a precipitation reaction. Phys. Rev. Lett. 113, 1–5 (2014).

93. Dressaire, E. & Sauret, A. Clogging of microfluidic systems. Soft Matter 13, 37–48 (2017).

94. Sicignano, L. et al. The effect of shear flow on microreactor clogging. Chem. Eng. J. 341, 639– 647 (2018).

95. Nagatsu, Y., Kondo, Y., Kato, Y. & Tada, Y. Effects of moderate Damköhler number on miscible viscous fingering involving viscosity decrease due to a chemical reaction. J. Fluid Mech. 625, 97–124 (2009).

96. Nagatsu, Y., Kondo, Y., Kato, Y. & Tada, Y. Miscible viscous fingering involving viscosity increase by a chemical reaction with moderate Damköhler number. Phys. Fluids 23, 014109 (2011).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る