リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Site-specific ubiquitination of the E3 ligase HOIP regulates apoptosis and immune signaling」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Site-specific ubiquitination of the E3 ligase HOIP regulates apoptosis and immune signaling

Fennell, M. Lilian Diaz, Carlos Gomez Deszcz, Luiza Kavirayani, Anoop Hoffmann, David Yanagitani, Kota 栁谷, 耕太 ヤナギタニ, コウタ Schleiffer, Alexander Mechtler, Karl Hagelkruys, Astrid Penninger, Josef Ikeda, Fumiyo 池田, 史代 イケダ, フミヨ 九州大学

2020.12.15

概要

HOIP, the catalytic component of the Linear Ubiquitin chain Assembly Complex (LUBAC), is a critical regulator of inflammation. However, how HOIP itself is regulated to control inflammatory responses i

参考文献

Akimov V, Barrio‐Hernandez I, Hansen SVF, Hallenborg P, Pedersen AK, Bekker‐Jensen DB, Puglia M, Christensen SDK, Vanselow JT, Nielsen MM et al (2018) UbiSite approach for comprehensive mapping of lysine and N‐terminal ubiquitination sites. Nat Struct Mol Biol 25: 631‐640 Akutsu M, Ye Y, Virdee S, Chin JW, Komander D (2011) Molecular basis for ubiquitin and ISG15 cross‐

reactivity in viral ovarian tumor domains. Proceedings of the National Academy of Sciences 108: 2228‐

2233 Ang RL, Ting AT (2018) Detection of RIPK1 in the FADD‐Containing Death Inducing Signaling Complex (DISC) During Necroptosis. In: Programmed Necrosis: Methods and Protocols, Ting A.T. (ed.) pp. 101‐

107. Springer New York: New York, NY 23 Asaoka T, Almagro J, Ehrhardt C, Tsai I, Schleiffer A, Deszcz L, Junttila S, Ringrose L, Mechtler K, Kavirayani A et al (2016) Linear ubiquitination by LUBEL has a role in <em>Drosophila</em> heat stress response. EMBO reports 17: 1624‐1640 Asaoka T, Ikeda F (2015) New Insights into the Role of Ubiquitin Networks in the Regulation of Antiapoptosis Pathways. Int Rev Cell Mol Biol 318: 121‐158 Boisson B, Laplantine E, Dobbs K, Cobat A, Tarantino N, Hazen M, Lidov HG, Hopkins G, Du L, Belkadi A et al (2015) Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia. The Journal of experimental medicine 212: 939‐951 Boisson B, Laplantine E, Prando C, Giliani S, Israelsson E, Xu Z, Abhyankar A, Israel L, Trevejo‐Nunez G, Bogunovic D et al (2012) Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL‐1 and LUBAC deficiency. Nature immunology 13: 1178‐1186 Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science (New York, NY) 339: 819‐823 Damgaard RB, Walker JA, Marco‐Casanova P, Morgan NV, Titheradge HL, Elliott PR, McHale D, Maher ER, McKenzie ANJ, Komander D (2016) The Deubiquitinase OTULIN Is an Essential Negative Regulator of Inflammation and Autoimmunity. Cell 166: 1215‐1230 e1220 Doblmann J, Dusberger F, Imre R, Hudecz O, Stanek F, Mechtler K, Durnberger G (2019) apQuant: Accurate Label‐Free Quantification by Quality Filtering. J Proteome Res 18: 535‐541 Dove KK, Klevit RE (2017) RING‐Between‐RING E3 Ligases: Emerging Themes amid the Variations. Journal of molecular biology 429: 3363‐3375 Draber P, Kupka S, Reichert M, Draberova H, Lafont E, de Miguel D, Spilgies L, Surinova S, Taraborrelli L, Hartwig T et al (2015) LUBAC‐Recruited CYLD and A20 Regulate Gene Activation and Cell Death by Exerting Opposing Effects on Linear Ubiquitin in Signaling Complexes. Cell reports 13: 2258‐2272 Elliott PR, Leske D, Hrdinka M, Bagola K, Fiil BK, McLaughlin SH, Wagstaff J, Volkmar N, Christianson JC, Kessler BM et al (2016) SPATA2 Links CYLD to LUBAC, Activates CYLD, and Controls LUBAC Signaling. Molecular cell 63: 990‐1005 Elliott PR, Nielsen SV, Marco‐Casanova P, Fiil BK, Keusekotten K, Mailand N, Freund SM, Gyrd‐Hansen M, Komander D (2014) Molecular basis and regulation of OTULIN‐LUBAC interaction. Molecular cell 54: 335‐348 Emmerich CH, Ordureau A, Strickson S, Arthur JS, Pedrioli PG, Komander D, Cohen P (2013) Activation of the canonical IKK complex by K63/M1‐linked hybrid ubiquitin chains. Proceedings of the National Academy of Sciences of the United States of America 110: 15247‐15252 Fiil BK, Damgaard RB, Wagner SA, Keusekotten K, Fritsch M, Bekker‐Jensen S, Mailand N, Choudhary C, Komander D, Gyrd‐Hansen M (2013) OTULIN restricts Met1‐linked ubiquitination to control innate immune signaling. Molecular cell 50: 818‐830 Gerlach B, Cordier SM, Schmukle AC, Emmerich CH, Rieser E, Haas TL, Webb AI, Rickard JA, Anderton H, Wong WW et al (2011) Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471: 591‐596 Haas TL, Emmerich CH, Gerlach B, Schmukle AC, Cordier SM, Rieser E, Feltham R, Vince J, Warnken U, Wenger T et al (2009) Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF‐

R1 signaling complex and is required for TNF‐mediated gene induction. Molecular cell 36: 831‐844 Heger K, Wickliffe KE, Ndoja A, Zhang J, Murthy A, Dugger DL, Maltzman A, de Sousa EMF, Hung J, Zeng Y et al (2018) OTULIN limits cell death and inflammation by deubiquitinating LUBAC. Nature 559: 120‐

124 Helmut B, Hildburg B, J. GH (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. ELECTROPHORESIS 8: 93‐99 Hospenthal MK, Mevissen TET, Komander D (2015) Deubiquitinase‐based analysis of ubiquitin chain architecture using Ubiquitin Chain Restriction (UbiCRest). Nature Protocols 10: 349 Hrdinka M, Fiil BK, Zucca M, Leske D, Bagola K, Yabal M, Elliott PR, Damgaard RB, Komander D, Jost PJ et al (2016) CYLD Limits Lys63‐ and Met1‐Linked Ubiquitin at Receptor Complexes to Regulate Innate Immune Signaling. Cell reports 14: 2846‐2858 24 Hrdinka M, Gyrd‐Hansen M (2017) The Met1‐Linked Ubiquitin Machinery: Emerging Themes of (De)regulation. Molecular cell 68: 265‐280 Ikeda F (2015) Linear ubiquitination signals in adaptive immune responses. Immunological reviews 266: 222‐236 Ikeda F, Deribe YL, Skånland SS, Stieglitz B, Grabbe C, Franz‐Wachtel M, van Wijk SJL, Goswami P, Nagy V, Terzic J et al (2011) SHARPIN forms a linear ubiquitin ligase complex regulating NF‐κB activity and apoptosis. Nature 471: 637 Justus SJ, Ting AT (2015) Cloaked in ubiquitin, a killer hides in plain sight: the molecular regulation of RIPK1. Immunological reviews 266: 145‐160 Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9: 286‐298 Keusekotten K, Elliott PR, Glockner L, Fiil BK, Damgaard RB, Kulathu Y, Wauer T, Hospenthal MK, Gyrd‐

Hansen M, Krappmann D et al (2013) OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1‐linked polyubiquitin. Cell 153: 1312‐1326 Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ et al (2011) Systematic and quantitative assessment of the ubiquitin‐modified proteome. Molecular cell 44: 325‐

340 Kirisako T, Kamei K, Murata S, Kato M, Fukumoto H, Kanie M, Sano S, Tokunaga F, Tanaka K, Iwai K (2006) A ubiquitin ligase complex assembles linear polyubiquitin chains. The EMBO journal 25: 4877‐

4887 Kumari S, Redouane Y, Lopez‐Mosqueda J, Shiraishi R, Romanowska M, Lutzmayer S, Kuiper J, Martinez C, Dikic I, Pasparakis M et al (2014) Sharpin prevents skin inflammation by inhibiting TNFR1‐induced keratinocyte apoptosis. eLife 3: e03422 Kupka S, De Miguel D, Draber P, Martino L, Surinova S, Rittinger K, Walczak H (2016) SPATA2‐Mediated Binding of CYLD to HOIP Enables CYLD Recruitment to Signaling Complexes. Cell reports 16: 2271‐2280 Lamkanfi M, Festjens N, Declercq W, Vanden Berghe T, Vandenabeele P (2007) Caspases in cell survival, proliferation and differentiation. Cell Death Differ 14: 44‐55 Lechtenberg BC, Rajput A, Sanishvili R, Dobaczewska MK, Ware CF, Mace PD, Riedl SJ (2016) Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation. Nature 529: 546‐

550 Meier P, Morris O, Broemer M (2015) Ubiquitin‐Mediated Regulation of Cell Death, Inflammation, and Defense of Homeostasis. Curr Top Dev Biol 114: 209‐239 Mertins P, Qiao JW, Patel J, Udeshi ND, Clauser KR, Mani DR, Burgess MW, Gillette MA, Jaffe JD, Carr SA (2013) Integrated proteomic analysis of post‐translational modifications by serial enrichment. Nat Methods 10: 634‐637 Peltzer N, Darding M, Montinaro A, Draber P, Draberova H, Kupka S, Rieser E, Fisher A, Hutchinson C, Taraborrelli L et al (2018) LUBAC is essential for embryogenesis by preventing cell death and enabling haematopoiesis. Nature 557: 112‐117 Peltzer N, Darding M, Walczak H (2016) Holding RIPK1 on the Ubiquitin Leash in TNFR1 Signaling. Trends Cell Biol 26: 445‐461 Peltzer N, Rieser E, Taraborrelli L, Draber P, Darding M, Pernaute B, Shimizu Y, Sarr A, Draberova H, Montinaro A et al (2014) HOIP deficiency causes embryonic lethality by aberrant TNFR1‐mediated endothelial cell death. Cell reports 9: 153‐165 Peltzer N, Walczak H (2019) Cell Death and Inflammation ‐ A Vital but Dangerous Liaison. Trends Immunol 40: 387‐402 Perez‐Riverol Y, Csordas A, Bai J, Bernal‐Llinares M, Hewapathirana S, Kundu DJ, Inuganti A, Griss J, Mayer G, Eisenacher M et al (2019) The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 47: D442‐D450 Rahighi S, Ikeda F, Kawasaki M, Akutsu M, Suzuki N, Kato R, Kensche T, Uejima T, Bloor S, Komander D et al (2009) Specific recognition of linear ubiquitin chains by NEMO is important for NF‐kappaB activation. Cell 136: 1098‐1109 25 Reiley WW, Zhang M, Jin W, Losiewicz M, Donohue KB, Norbury CC, Sun SC (2006) Regulation of T cell development by the deubiquitinating enzyme CYLD. Nature immunology 7: 411‐417 Rickard JA, Anderton H, Etemadi N, Nachbur U, Darding M, Peltzer N, Lalaoui N, Lawlor KE, Vanyai H, Hall C et al (2014) TNFR1‐dependent cell death drives inflammation in Sharpin‐deficient mice. Elife 3 Rittinger K, Ikeda F (2017) Linear ubiquitin chains: enzymes, mechanisms and biology. Open Biol 7 Rosner D, Schneider T, Schneider D, Scheffner M, Marx A (2015) Click chemistry for targeted protein ubiquitylation and ubiquitin chain formation. Nat Protoc 10: 1594‐1611 Sasaki K, Iwai K (2015) Roles of linear ubiquitinylation, a crucial regulator of NF‐kappaB and cell death, in the immune system. Immunological reviews 266: 175‐189 Sasaki Y, Fujita H, Nakai M, Iwai K (2015) Immunoblot analysis of linear polyubiquitination of NEMO. Methods in molecular biology (Clifton, NJ) 1280: 297‐309 Schaeffer V, Akutsu M, Olma MH, Gomes LC, Kawasaki M, Dikic I (2014) Binding of OTULIN to the PUB domain of HOIP controls NF‐kappaB signaling. Molecular cell 54: 349‐361 Schneider P, Bodmer JL, Holler N, Mattmann C, Scuderi P, Terskikh A, Peitsch MC, Tschopp J (1997) Characterization of Fas (Apo‐1, CD95)‐Fas ligand interaction. The Journal of biological chemistry 272: 18827‐18833 Seymour RE, Hasham MG, Cox GA, Shultz LD, Hogenesch H, Roopenian DC, Sundberg JP (2007) Spontaneous mutations in the mouse Sharpin gene result in multiorgan inflammation, immune system dysregulation and dermatitis. Genes and immunity 8: 416‐421 Smit JJ, Monteferrario D, Noordermeer SM, van Dijk WJ, van der Reijden BA, Sixma TK (2012) The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING‐IBR‐RING domain and the unique LDD extension. The EMBO journal 31: 3833‐3844 Smit JJ, Sixma TK (2014) RBR E3‐ligases at work. EMBO Rep 15: 142‐154 Smit JJ, van Dijk WJ, El Atmioui D, Merkx R, Ovaa H, Sixma TK (2013) Target specificity of the E3 ligase LUBAC for ubiquitin and NEMO relies on different minimal requirements. The Journal of biological chemistry 288: 31728‐31737 Stieglitz B, Morris‐Davies AC, Koliopoulos MG, Christodoulou E, Rittinger K (2012) LUBAC synthesizes linear ubiquitin chains via a thioester intermediate. EMBO reports 13: 840‐846 Takiuchi T, Nakagawa T, Tamiya H, Fujita H, Sasaki Y, Saeki Y, Takeda H, Sawasaki T, Buchberger A, Kimura T et al (2014) Suppression of LUBAC‐mediated linear ubiquitination by a specific interaction between LUBAC and the deubiquitinases CYLD and OTULIN. Genes to cells : devoted to molecular & cellular mechanisms 19: 254‐272 Tokunaga F, Nakagawa T, Nakahara M, Saeki Y, Taniguchi M, Sakata S, Tanaka K, Nakano H, Iwai K (2011) SHARPIN is a component of the NF‐kappaB‐activating linear ubiquitin chain assembly complex. Nature 471: 633‐636 Tokunaga F, Sakata S, Saeki Y, Satomi Y, Kirisako T, Kamei K, Nakagawa T, Kato M, Murata S, Yamaoka S et al (2009) Involvement of linear polyubiquitylation of NEMO in NF‐kappaB activation. Nat Cell Biol 11: 123‐132 Wagner SA, Satpathy S, Beli P, Choudhary C (2016) SPATA2 links CYLD to the TNF‐alpha receptor signaling complex and modulates the receptor signaling outcomes. The EMBO journal 35: 1868‐1884 Walczak H (2011) TNF and ubiquitin at the crossroads of gene activation, cell death, inflammation, and cancer. Immunological reviews 244: 9‐28 Walden H, Rittinger K (2018) RBR ligase‐mediated ubiquitin transfer: a tale with many twists and turns. Nature structural & molecular biology 25: 440‐445 Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One‐step generation of mice carrying mutations in multiple genes by CRISPR/Cas‐mediated genome engineering. Cell 153: 910‐918 Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview Version 2‐‐a multiple sequence alignment editor and analysis workbench. Bioinformatics (Oxford, England) 25: 1189‐1191 Witt A, Vucic D (2017) Diverse ubiquitin linkages regulate RIP kinases‐mediated inflammatory and cell death signaling. Cell Death Differ 24: 1160‐1171 26 Ye Y, Akutsu M, Reyes‐Turcu F, Enchev RI, Wilkinson KD, Komander D (2011) Polyubiquitin binding and cross‐reactivity in the USP domain deubiquitinase USP21. EMBO Rep 12: 350‐357 Zhang J, Stirling B, Temmerman ST, Ma CA, Fuss IJ, Derry JM, Jain A (2006) Impaired regulation of NF‐

kappaB and increased susceptibility to colitis‐associated tumorigenesis in CYLD‐deficient mice. The Journal of clinical investigation 116: 3042‐3049 Figure legends

Figure 1 - Human HOIP is ubiquitinated at K784 and regulates NF-κB.

A. A scheme of procedures for the UbiCRest-based assays employed to analyze HOIP-modification

with ubiquitin chains. Total cell extracts from HEK293T cells transiently expressing Myc-HOIP and

Myc-OTULIN C129A, a catalytic inactive mutant, subjected to GST-linear-TUBE pulldown followed

by UbiCRest using recombinant deubiquitinases (vOTU, OTULIN and USP21).

B. UbiCRest assays to evaluate ubiquitin chain types on HOIP examined by immunoblotting.

Immunoblotting of samples using antibodies as indicated. Ponceau S staining used for monitoring GSTliner-TUBE input. Representative data shown from three independent experiments.

C. Mass spectrometry spectra corresponding to a peptide containing HOIP-K784 with double Gly

(114+K).

D. Domains of human HOIP and identified ubiquitination sites at K454, K458, K735 and K784.

E. Multiple sequence alignment of different HOIP orthologues illustrating the position K735 and K784

according to the ClustalX colour scheme. Sequences were retrieved from the NCBI protein database

with the following accessions: Homo sapiens (NP_060469.4), Canis lupus (XP_005623312.1), Mus

musculus

(NP_919327.2),

(NP_001090429.1),

Monodelphis

Alligator

domestica

mississippiensis

(XP_007479924.1),

(XP_006259801.1),

Xenopus

Takifugu

laevis

rubripes

(XP_003968217.2) and Drosophila melanogaster (NP_723214.2).

F. Co-immunoprecipitation analysis of the HOIP K784R mutant with SHARPIN and HOIL-1L using

total cell extracts of HEK293T cells transiently expressing Myc-HOIP wildtype (WT), or Myc-HOIPK784R with HOIL-1L-HA and Flag-SHARPIN. Anti-Vinculin antibody used to monitor protein

loading. Representative data shown from three independent experiments.

G. Luciferase-based NF-κB gene reporter assays using Myc -HOIP wildtype (WT), a catalytic inactive

mutant C885A, ubiquitination site mutants of K454R, K458R, K735R, K784R co-transfected with

HOIL-1L-HA and Flag-SHARPIN. Luciferase signal was normalized to an internal Renilla control

signal.

Data information: In (G), data are presented as mean ± SD. **p≤0.01, ****p≤0.0001 (ANOVA). n=4.

27 Figure 2 - The human HOIP K784R mutant as a part of the LUBAC generates linear ubiquitin

chains and ubiquitinates its substrate NEMO in vitro and in cells.

A. In vitro ubiquitination assays for the indicated times using the recombinant proteins of ubiquitin

(Ub), E1, E2 (UbcH7), HOIP (WT, K784R or C885A mutant), HOIL-1L, SHARPIN and NEMO.

Immunoblotting of Linear ubiquitin chains, NEMO, HOIP, HOIL-1L and SHARPIN detected by using

antibodies as indicated. Representative data from three independent experiments.

B. Immunoblotting to detect ubiquitination of NEMO in HEK293T cells transiently expressing FlagNEMO, GFP-SHARPIN, and HOIL-1L-HA with Myc-HOIP wildtype (WT), Myc-HOIP K784R or

Myc-HOIP C885A. Total cell lysates in denaturing conditions subjected to SDS-PAGE followed up by

immunoblotting using antibodies as indicated. Anti-Vinculin antibody to monitor loading.

Representative data from three independent experiments.

Figure 3 –No obvious developmental defect in HoipK778R/K778R knockin mice is observed while TNFresponses are suppressed in HoipK778R/K778R cells.

A. Numbers of weaned mice of the indicated genotypes from Hoip+/K778R crosses.

B. A gross appearance image of Hoip+/+ and HoipK778R/K778R male mice at 6-week old.

C,D. Immunoblotting to detect TNF-induced degradation and phosphorylation of IB- or

phosphorylation of IKK in immortalized Hoip+/+ and HoipK778R/K778R MEFs treated with human TNF

(20ng/ml) for the indicated times. Immunoblots of anti-Vinculin antibody and anti--Tubulin antibody

shown for monitoring loading amount. Representative data from three independent experiments.

E. Induction of TNF-dependent NF-κB target genes, ICAM, VCAM and IB- in Hoip+/+ or

HoipK778R/K778R immortalized MEFs determined by qRT-PCR. RNA extraction and cDNA synthesis

from MEFs treated with hTNF (20ng/ml) for the indicated time subjected to examine transcripts of

ICAM, VCAM and IB-. Normalization to β-actin. Representative data from three independent

experiments, n=3.

F. TNF-dependent induction of cleavage of PARP and Caspase 3 in primary Hoip+/+ or HoipK778R/K778R

MEFs determined by immunoblotting. Total cell extracts of MEFs treated with hTNF (100ng/ml) and

CHX (1µg/ml) for the indicated times subjected to SDS-PAGE followed by immunoblotting using

antibodies as indicated. Anti--Tubulin antibody used to monitor loading amount. Representative data

of two independent experiments.

G. TNF-dependent induction of Caspase 3 activation in immortalized Hoip+/+ or HoipK778R/K778R MEFs

measured by using DEVD-AFC. MEFs treated with hTNF (100ng/ml) and CHX (1µg/ml) for 4 hours

subjected to the Caspase 3 activity assays.

28 H. TNF-induced Caspase 8 activity in Hoip+/+ or HoipK778R/K778R immortalized MEFs treated with hTNF

(100ng/ml) with or without Cycloheximide (CHX) (1µg/ml) or z-VAD (20µM). Representative data

from three independent experiments, n=4.

I. TNF-receptor complex II formation in Hoip+/+ or HoipK778R/K778R immortalized MEFs. Total cell

extracts of MEFs treated with hTNF (100ng/ml), CHX (1µg/ml) and zVAD (25µM) for the indicated

time immunoprecipitated using an anti-FADD antibody. Recruitment of RIPK1, HOIP and SHARPIN

monitored by immunoblotting. The anti-Vinculin antibody blot shown for monitoring loading amount.

The black arrows indicating HOIP and SHARPIN in the IP samples and unmodified RIPK in the input

samples, respectively. Representative data of two independent experiments.

Data information: In (E,G and H), data are presented as mean ± SD. **p≤0.01, ***p≤0.001,

****p≤0.0001 (ANOVA, n=4 in G).

CHX (Cycloheximide), hTNF (human Tumor Necrosis Factor), z-VAD (Z-Val-Ala-Asp fluoromethyl

ketone)

Figure 4 - SHARPIN-deficiency leads HoipK778R/K778R mice to embryonic lethality, which is rescued

by TNFR1 knockout.

A. Numbers of weaned mice of the indicated genotypes from crosses of Hoip+/K778R; Sharpin+/cpdm mice.

B. Number of the embryos of the indicated genotype at E12.5 and E13.5 from crosses of HoipK778R/K778R;

Sharpin+/cpdm mice.

C. Gross appearance images of HoipK778R/K778R; Sharpin+/+, HoipK778R/K778R; Sharpin+/cpdm and

HoipK778R/K778R; Sharpincpdm/cpdm embryos at E13.5. Representative pictures from 7 embryos each. Scale

bars: 1 mm.

D. Gross appearance images of Hoip+/K778R;Sharpincpdm/cpdm;Tnfr1+/-and HoipK778R/+; Sharpincpdm/cpdm ;

Tnfr1-/- female mice at 6 weeks of age, and a female HoipK778R/K778R; Sharpincpdm/cpdm ; Tnfr1-/- mouse at

8 weeks of age.

E. H&E staining, Keratin 14 (KRT14) and Cleaved Caspase 3 immunostaining of dorsal skin sections

from mice of the indicated genotypes at 4 or 8 weeks of age. Scale bars: 50 µm.

Figure 5 – SHARPIN-deficiency in Hoip+/K778R heterozygous mice leads to early onset of skin

inflammation accompanied with apoptosis induction.

29 A. Gross appearance of mice of the indicated genotypes (male mice at 4-week old). Scale bars: 10 mm.

B. Immunostaining (H&E, Keratin 14 (KRT14), Ly6G, F4/80 and Cleaved Caspase 3) of mouse dorsal

skin sections of the indicated genotypes. Scale bars: 50 µm.

C-E. Measurements (Total epidermis skin thickness, Keratin layer thickness and Squamous cell layer

thickness) of dorsal skin sections obtained from male mice of the indicated genotypes. Each dot on the

scatter dot plot represents one focus point of the measurement. (N=20, 20, 30, 40, 40 for Hoip+/+;

Sharpin+/+, HoipK778R/K778R; Sharpin+/+ , Hoip+/K778R; Sharpin+/cpdm,

Hoip+/+; Sharpincpdm/cpdm,

Hoip+/K778R; Sharpincpdm/cpdm, respectively.)

F. Immunoblotting to examine TNF-induced degradation and phosphorylation of IκB-α in immortalized

MEFs of the indicated genotypes using total cell extracts of MEFs treated with hTNF (20ng/ml) for the

indicated times. Representative of three independent experiments.

G. Immunoblotting of TNF-induced cleavage of PARP and caspase 3 in immortalized MEFs of the

indicated genotypes using total cell extracts of MEFs treated with hTNF (100ng/ml) with or without

CHX (1µg/ml) for indicated times. Representative of three independent experiments.

H,I. TNF-dependent induction of Caspase 3 activation in immortalized MEFs of the indicated genotype

measured by DEVD-AFC. MEFs treated with hTNF (100ng/ml) alone, or with CHX (1µg/ml) for 4

hours (H) or 2 hours (I) subjected to the Caspase 3 activity assays. A representative data of two

independent experiments, n=4.

J. TNF-induced Caspase 8 activity in immortalized MEFs of the indicated genotype. Luminoldependent activity of Caspase 8 in immortalized MEFs treated with hTNF (100ng/ml) with or without

CHX (1µg/ml) . A representative data of three independent experiments, n=4.

Data information: In (C-E and H-J), data are presented as mean ± SD. **p≤0.01 , ***p≤0.001,

****p≤0.0001, ANOVA.

hTNF (human Tumor Necrosis Factor), CHX (Cycloheximide),

Figure 6 – A proposed model of HOIP-site specific ubiquitination in the regulation of the TNF

signaling cascades.

A working model describing a role of site-specific ubiquitination of HOIP in the regulation of the TNFinduced NF-B and apoptosis pathways based on this study. Schematics of simplified TNF signaling

in wild type cells (WT, left panel) and HOIP-K784R cells (right panel) are shown. Upon TNF-binding

to TNF receptor 1, complex I, which includes RIPK1 and LUBAC components (HOIP, HOIL-1L and

SHARPIN) is formed. In this signaling cascade, LUBAC linearly ubiquitinates NEMO and RIPK1. Site

30 specific ubiquitination of HOIP at K784 plays a role in inducing TNF-dependent NF-B target genes

and in inhibition of apoptosis by inhibiting RIPK1 recruitment into TNF receptor complex II. Linkage

types of ubiquitin chains conjugated on HOIP-K784 remains open.

31 ...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る