リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Study on optimal deployment and arrival time estimation method of heterogeneous multiagent system in case of surveillance mission」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Study on optimal deployment and arrival time estimation method of heterogeneous multiagent system in case of surveillance mission

市原 紀生 横浜国立大学 DOI:info:doi/10.18880/00013927

2021.06.17

概要

現代におけるUAV(Unmanned Aerial Vehicleの略で,無人航空機の意味),およびUGV(Unmanned Ground Vehicleの略で,無人車両の意味)に代表される無人機の技術的発展には目を見張るものがあり,それらの一般社会における普及も急速に進んでいる[1].元来,無人機の研究開発および運用は,民生分野においては工場等の管理された空間内における特定の作業,軍事分野においては兵士の損耗を極小化するための代替手段に限定されてきた.しかしながら,近年の各種センサ,計算機等の高性能化,小型化,汎用化等により,従来では不可能であった高精度かつ高速な機能が実装可能となり,これにより世界中の多くの企業,大学,研究機関等の参入障壁が下がったことから,各種機能を実現するソフトウェアの研究開発の速度も大幅に上昇し,無人機の適用範囲は我々が通常生活を営む実空間へと急速に拡大している状況である.今では,無人機はかつてのような特別な存在ではなくなり,設備の点検,施設の警備,物資の輸送,撮影等の幅広い任務を遂行しており,今後さらに任務の拡大が予想されている.本章では,国内外の無人機に関係する政策や実験等の研究事例について紹介した後,研究の背景,目的および構成について記載する.

この論文で使われている画像

参考文献

[1] H. Shakhatreh, A. H. Sawalmeh, A. Al-Fuqaha, Z. Dou, E. Almaita, I. Khalil, N. S. Othman, A. Khreishah and M. Guizani, "Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges," IEEE Access, vol. 7, pp. 48572-48634, 2019.

[2] 内 閣 府 , “ 科 学 技 術 基 本 計 画 , ” [ オ ン ラ イ ン ]. Available: https://www8.cao.go.jp/cstp/kihonkeikaku/index5.html. [アクセス日: 30 10 2020].

[3] 内 閣 府 , “ 総 合科 学技術 ・ イノ ベ ー ショ ン 会議 , ” [ オ ン ライ ン ]. Available: https://www8.cao.go.jp/cstp/. [アクセス日: 30 10 2020].

[4] 日 本 国 政 府 , “ 科 学 技 術 基 本 計 画 , ” 22 1 2016. [ オ ン ラ イ ン ]. Available: https://www8.cao.go.jp/cstp/kihonkeikaku/5honbun.pdf. [アクセス日: 30 10 2020].

[5] 淺間一, “東日本大震災および福島第一原子力発電所事故におけるロボット技術の導 入とその課題(その 1),” 日本ロボット学会誌, 第 巻 29, 第 7, pp. 658-659, 2011.

[6] 淺間一, “東日本大震災および福島第一原子力発電所事故におけるロボット技術の導 入とその課題(その2),” 日本ロボット学会誌, 第 巻 29, 第 9, pp. 796-798, 2011.

[7] 小柳栄次, “災害対応ロボットの実用化と課題,” 建設の施工企画, 第 747, pp. 57-61, 2012.

[8] 淺間一, “災害時に活用可能なロボット技術の研究開発と運用システムの構築,” 日本 ロボット学会誌, 第 巻 32, 第 1, pp. 37-41, 2014.

[9] 田所諭, “防災ロボットについて我が国が取り組むべき中長期的課題,” 日本ロボット 学会誌, 第 巻 32, 第 2, pp. 154-161, 2014.

[10] 内閣府, “革新的研究開発推進プログラム(ImPACT),” 2013. [オンライン]. Available: https://www8.cao.go.jp/cstp/sentan/about-kakushin.html. [アクセス日: 30 10 2020].

[11] 国立研究開発法人科学技術振興機構, “革新的研究開発推進プログラム(タフ・ロボテ ィ ク ス ・ チ ャ レ ン ジ ) , ” 2014. [ オ ン ラ イ ン ]. Available: https://www.jst.go.jp/impact/program/07.html. [アクセス日: 30 10 2020].

[12] 鈴森康一, “次世代アクチュエータが切り拓く新しいロボティクス,” 日本ロボット学 会誌, 第 巻 33, 第 9, pp. 656-659, 2015.

[13] 野波健蔵, “回転翼系ロボティクス,” 日本ロボット学会, 第 巻 34, 第 2, pp. 74-80, 2016.

[14] 松野文俊, 亀川哲志, 竹森達也, 田中基康, 多田隈建二朗, 鈴木陽介, 坂東宜昭, 糸山 克寿, 奥乃博 , 藤原始史, “ImPACT TCR 太索状ロボットの研究開発の現状と展望,” 日本ロボット学会誌, 第 巻 35, 第 10, pp. 720-726, 2017.

[15] 内 閣 府 , “ Society 5.0, ” [ オ ン ラ イ ン ]. Available: http://www8.cao.go.jp/cstp/society5_0/index.html. [アクセス日: 30 10 2020].

[16] 東 北 大 学 , “ Robo Rescue, ” [ オ ン ラ イ ン ]. Available: https://www.tohoku.ac.jp/en/research/research_highlights/research_highlight_14.html. [アクセ ス日: 30 10 2020].

[17] 防衛省, “将来無人装備に関する研究開発ビジョン,” 31 8 2016. [オンライン]. Available: https://www.mod.go.jp/atla/soubiseisaku/plan/vision/future_vision.pdf. [アクセス日: 30 10 2020].

[18] Center for Strategic and Budgetary Assessments, “TOWARD A NEW OFFSET STRATEGY,” 27 10 2014. [ オ ン ラ イ ン ]. Available: https://csbaonline.org/uploads/documents/OffsetStrategy-Web.pdf. [アクセス日: 30 10 2020].

[19] U.S. Department of Defense, “Reagan National Defense Forum Keynote,” 15 11 2014. [オ ンライン]. Available: https://www.defense.gov/News/Speeches/Speech-View/Article/606635/. [アクセス日: 30 10 2020].

[20] H. T. Tan and R. R. Hill, "The In-Transit Vigilant Covering Tour Problems for Routing Unmanned Ground Vehicles," in Operations Research for Unmanned Systems, Wiley, 2016, pp. 30-49.

[21] E. Kivelevitch, K. Cohen , M. Kumar, “Near-Optimal Assignment o UAVs to Targets Using a Market-Based Approach,” 著: Operations Research for Unmanned Systems, Wiley, 2016, pp. 50-82.

[22] D. M. Mahalak, “Analyzing a Design Continuum for Automated Military Convoy Operations,” 著: Operations Research for Unmanned Systems, Wiley, 2016, pp. 177-200.

[23] 東俊一 , 永原正章, “マルチエージェントシステムの制御,” システム/制御/情報, 第 巻 57, 第 5, pp. 207-210, 2013.

[24] J. Bajo, F. D. l. Prieta, J. M. Corchado and S. Rodríguez, "A low-level resource allocation in an agent-based Cloud Computing platform," Applied Soft Computing, vol. 48, pp. 716-728, 2016.

[25] M. Gatti, A. P. Appel, C. Pinhanez, C. d. Santos, D. Gribel, P. Cavalin and S. B. Neto, "LargeScale Multi-agent-Based Modeling and Simulation of Microblogging-Based Online Social Network," Multi-Agent-Based Simulation XIV, pp. 17-33, 2013.

[26] S. S and V. Paul, "AgentTab: An Agent Based Approach to Detect Tabnabbing Attack," Procedia Computer Science, vol. 46, pp. 574-581, 2015.

[27] R. Claes, T. Holvoet and D. Weyns, "A Decentralized Approach for Anticipatory Vehicle Routing Using Delegate Multiagent Systems," IEEE Transactions on Intelligent Transportation Systems, vol. 12, pp. 364-373, 2011.

[28] A. More and V. Raisinghani, "A survey on energy efficient coverage protocols in wireless sensor networks," Journal of King Saud University – Computer and Information Sciences, vol. 29, pp. 428-448, 2017.

[29] P. Vytelingum, T. D. Voice, S. D. Ramchurn, A. Rogers and N. R. Jennings, "Agent-based MicroStorage Management for the Smart Grid," Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 39-46, 2010.

[30] G. H. Merabet, M. Essaaidi, H. Talei, M. R. Abid, N. Khalil, M. Madkour and D. Benhaddou, "Applications of Multi-Agent Systems in Smart Grids: A Survey," 2014 International Conference on Multimedia Computing and Systems, pp. 1088-1094, 2014.

[31] K. Hager, J. Rauh and W. Rid, "Agent-based modeling of traffic behavior in growing metropolitan areas," Transportation Research Procedia, vol. 10, pp. 306-315, 2015.

[32] M. Khayyat and a. Awasthi, "An Intelligent Multi-agent Based Model for Collaborative Logistics Systems," Transportation Research Procedia, vol. 12, pp. 325-338, 2016.

[33] O. v. Pruissen, A. v. d. Togt and E. Werkman, "Energy efficiency comparison of a centralized and a multi-agent market based heating system in a field test," Energy Procedia, vol. 62, pp. 170-179, 2014.

[34] J. Cai, D. Kim, R. Jaramillo, J. E. Braun and J. Hu, "A general multi-agent control approach for building energy system optimization," Energy and Building, vol. 127, pp. 337-351, 2016.

[35] A. Dori, S. S. Kanhere and R. Jurdak, "Multi-Agent Systems: A survey," IEEE Access, vol. 6, pp. 28573-28593, 2018.

[36] J. Fu and J. Wang, "Adaptive coordinated tracking of multi-agent systems with quantized information," Systems & Control Letters, vol. 74, pp. 115-125, 2014.

[37] A. González-Pardo, P. Varona, D. Camacho and F. d. B. Rodriguez Ortiz, "Communication by identity discrimination in bio-inspired multi‐agent systems," Concurrency and Computation Practice and Experience, vol. 24, pp. 589-603, 2012.

[38] D. Angeli and P.-A. Bliman, "Extension of a result by Moreau on stability of leaderless multiagent systems," in 44th IEEE Conference on Decision and Control, and the European Control Conference 2005, Seville, Spain, 2005.

[39] S. Li, H. Du and X. Lin, "Finite-time consensus algorithm for multi-agent systems with doubleintegrator dynamics," Automatica, vol. 47, pp. 1706-1712, 2011.

[40] J. Vrancken and M. D. S. Soares, "A real-life test bed for multi-agent monitoring of road network performance," in Infrastructure Systems and Services: Building Networks for a Brighter Future 2008 First International Conference on, 2008.

[41] Y. Kim and E. T. Matson, "A Realistic Decision Making for Task Allocation in Heterogeneous Multi-agent Systems," Procedia Computer Science, vol. 94, pp. 386-391, 2016.

[42] S. Khodaverdian, "On the Synchronization of Linear Heterogeneous Multi-Agent Systems in cycle-free communication networks," in Proceedings of 2014 International Conference on Modelling, Identification & Control, Melbourne, VIC, Australia, 2014.

[43] Q. Song, F. Liu, H. Su and A. V. Vasilakos4, "Semi‐global and global containment control of multi‐agent systems with second‐order dynamics and input saturation," International Journal of Robust and Nonlinear Control, vol. 26, no. 16, pp. 3460-3480, 2016.

[44] N. Nigham, "The Multiple Unmanned Air Vehicle Persistent Surveillance Problem: A Review," Machines 2014, pp. 13-72, 2014.

[45] Y. Mei, Y.-H. Lu, Y. C. Hu and C. S. G. Lee, "Deployment of mobile robots with energy and timing constraints," IEEE Transactions on Robotics, vol. 22, no. 3, pp. 507-522, 2006.

[46] P. Vincent and I. Rubin, "A framework and analysis for cooperative search using UAV swarms," Proceedings of the 2004 ACM symposium on Applied computing, pp. 79-86, 2004.

[47] W. Burgard, M. Moors, D. Fox, R. Simmons and S. Thrun, "Collaborative multi-robot exploration," in IEEE International Conference on Robotics and Automation, San Francisco, USA, 2000.

[48] W. Burgard, M. Moors and F. Schneider, "Collaborative Exploration of Unknown Environments with Teams of Mobile Robots," Advances in Plan-Based Control of Robotic Agents, pp. 52-70, 2001.

[49] J. H. Reif and H. Wang, "Social potential fields: A distributed behavioral control for autonomous robots," Robotics and Autonomous Systems, vol. 27, pp. 171-194, 1999.

[50] Y. Yang, M. M. Polycarpou and A. A. Minai, "Opportunistically cooperative neural learning in mobile agents," in Proceedings of the 2002 International Joint Conference on Neural Networks, Honolulu, USA, 2002.

[51] N. Nigam, S. Bieniawski, I. Kroo and J. Vian, "Control of Multiple UAVs for Persistent Surveillance: Algorithm and Flight Test Results," IEEE Transactions on Control Systems Technology, vol. 20, no. 5, pp. 1236-1251, 2012.

[52] P. Gaudiano, B. Shargel, E. Bonabeau and I. Corporation, "CONTROL OF UAV SWARMS: WHAT THE BUGS CAN TEACH US," in PROCEEDINGS OF THE 2ND AIAA "UNMANNED UNLIMITED" SYSTEMS, TECHNOLOGIES, AND OPERATIONS-AEROSPACE, LAND, AND SEA CONFERENCE AND WORKSHOP, SAN DIEGO, USA, 2003.

[53] L. Ma, H. Min, S. Wang, Y. Liu and S. Liao, "An overview of research in distributed attitude coordination control," Journal of Automatica Sinica, vol. 2, no. 2, pp. 121-133, 2015.

[54] X. Liu, X. Gao and J. Han, "Robust unknown input observer based fault detection for high-order multi-agent systems with disturbances," ISA Transactions, vol. 61, pp. 15-28, 2016.

[55] M. R. Davoodi, N. Meskin and K. Khorasani, "Simultaneous Fault Detection and Control Design for a network of multi-agent systems," in 2014 European Control Conference, Strasbourg, France, 2014.

[56] B. Horling and V. Lesser, "A survey of multi-agent organizational paradigms," The Knowledge Engineering Review, vol. 19, no. 4, pp. 281-316, 2005.

[57] C. H. Brooks and E. H. Durfee, "Congregation Formation in Multiagent Systems," Autonomous Agents and Multi-Agent Systems, vol. 7, pp. 145-170, 2003.

[58] E. Argente, J. Palanca, G. Aranda, V. Julian, V. Botti, A. Garcia-Fornes and A. Espinosa, "Supporting Agent Organizations," Multi-Agent Systems and Applications V, pp. 236-245, 2007.

[59] K.-K. Oh, M.-C. Park and H.-S. Ahn, "A survey of multi-agent formation control," Automatica, vol. 53, pp. 424-440, 2015.

[60] Y. Arfat and E. F. Eassa, "A Survey on Fault Tolerant Multi Agent System," International Journal of Information Technology and Computer Science, vol. 9, pp. 39-48, 2016.

[61] Y. Hua, X. Dong, Q. Li and Z. Ren, "Distributed fault-tolerant time-varying formation control for high-order linear multi-agent systems with actuator failures," ISA Transactions, vol. 71, pp. 40-50, 2017.

[62] D. Ye, M. Zhang and A. V. Vasilakos, "A Survey of Self-Organization Mechanisms in Multiagent Systems," IEEE Transactions on Systems, Man, and Cybernetics, vol. 47, no. 3, pp. 441-461, 2017.

[63] F. Daneshfar and H. Bevrani, "Multi-Agent Systems in Control Engineering: A Survey," Journal of Control Science and Engineering, vol. 2009, no. 5, pp. 1-12, 2009.

[64] R. M. Murray, "Recent Research in Cooperative Control of Multivehicle Systems," Journal of Dynamic Systems, Measurement, and Control, vol. 129, no. 5, pp. 571-583, 2007.

[65] U.S. Department of Defense, “Department of Defense Announces Successful Micro-Drone Demonstratio,” 9 1 2017. [オンライン]. Available: https://www.defense.gov/News/NewsReleases/News-Release-View/Article/1044811/department-of-defense-announces-successfulmicro-drone-demonstration/. [アクセス日: 30 10 2020].

[66] B. Donmez, C. Nehme and M. L. Cummings, "Modeling Workload Impact in Multiple Unmanned Vehicle Supervisory Control," IEEE Transactions on Systems, vol. 40, no. 6, pp. 1180-1190, 2010.

[67] C. W. Reynolds, "Flocks, herds and schools: A distributed behavioral model," SIGGRAPH '87 Proceedings of the 14th annual conference on Computer graphics and interactive techniques, vol. 21, no. 4, pp. 25-34, 1987.

[68] S. Huang, R. S. H. Teo and W. K. Leong, "Review of coverage control of multi unmanned aerial vehicles," in 2017 11th Asian Control Conference, Gold Coast, Australia, 2017.

[69] X. Cheng, D. Cao and C. Li, "Survey of Cooperative Path Planning for Multiple Unmanned Aerial Vehicles," Applied Mechanics and Materials, Vols. 668-669, pp. 388-393, 2014.

[70] P. F. Hokayem, D. Stipanovic and M. W. Spong, "On persistent coverage control," in 2007 46th IEEE Conference on Decision and Control, New Orleans, USA, 2007.

[71] Y. JIN, Y. WU and N. FAN, "Reserarch on Distributed Cooperative Control of Swarm UAVs for Persistent Coverage," in Proceeding of the 33rd Chinese Control Conference, Nanjing, China, 2014.

[72] D. Mitchell, M. Corah, N. Chakraborty, K. Sycara and N. Michael, "Multi-robot Long-Term Persistent Coverage with Fuel Constrained Robots," in 2015 IEEE International Conference on Robotics and Automation, Seatle, USA, 2015.

[73] N. Nigam and I. Kroo, "Control and Design of Multiple Unmanned Air Vehicles for a Persistent Surveillance Task," in 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Victoria, Canada, 2008.

[74] J. Kim, B. D. Song and J. R. Morrison, "On the Scheduling of Systems of UAVs and Fuel Service Stations for Long-Term Mission Fulfillment," Journal of Intelligent & Robotic Systems, vol. 70, no. 1-4, pp. 347-359, 2013.

[75] P. Gaudiano, B. Shargel, E. Bonabeau and B. T. Clough, "Control of UAV Swarms: What the Bugs Can Teach Us," in 2nd AIAA "Unmanned Unlimited" Conf. and Workshop & Exhibt, San Diego, USA, 2003.

[76] U.S. Department of Defense, “PERDIX FACT SHEET,” 9 1 2017. [オンライン]. Available: https://dod.defense.gov/Portals/1/Documents/pubs/Perdix%20Fact%20Sheet.pdf?ver=2017- 01-09-101520-643. [アクセス日: 30 10 2020].

[77] H. DUAN and S. LIU, "SCIENCE CHINA Technological Sciences," Unmanned air/ground vehicles heterogeneous cooperative techniques: Current status and prospects, vol. 53, no. 5, pp. 1349-1355, 2010.

[78] S. L. Waslander, "Unmanned Aerial and Ground Vehicle Teams: Recent Work and Open Problems," in Autonomous Control Systems and Vehicles, Springer, 2013, pp. 21-36.

[79] J. A. Sauter, R. S. Mathews, K. Neuharth, J. S. Robinson, J. Moody and S. Riddle, "Demonstration of Swarming Control of Unmanned Ground and Air Systems in Surveillance and Infrastructure Protection," in 2009 IEEE International Conference on Technologies for Homeland Security, Waltham, USA, 2009.

[80] J. Kalwa and R. Engel, "Overview about the GREX-Project: Coordination and Control of Cooperating Heterogeneous Unmanned Systems in Uncertain Environments," in Oceans 2009 Europe, Bremen, Germany, 2009.

[81] C. E. Pippin, A.-P. Hu and M. Matthews, "DECENTRALIZED COLLABORATION BETWEEN HETEROGENEOUS AGENTS IN COMBINED AIR AND GROUND MISSIONS," in AUVSI Unmanned Systems North America, Denver, USA, 2010.

[82] M. Langerwisch, T. Wittmann, S. Thamke, T. Remmersmann, A. Tiderko and B. Wagner, "Heterogeneous teams of unmanned ground and aerial robots for reconnaissance and surveillance - A field experiment," in 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics, Linkoping, Sweden, 2013.

[83] U.S. Department of Defense DARPA, “OFFSET Envisions Swarm Capabilities for Small Urban Ground Units,” 7 12 2016. [オンライン]. Available: https://www.darpa.mil/newsevents/2016-12-07. [アクセス日: 30 10 2020].

[84] U.S. Department of Defense DARPA, “OFFSET Awards Contracts to Advance Swarm Tactics for Urban Missions, Enhance Physical Testbeds,” 13 4 2020. [オンライン]. Available: https://www.darpa.mil/news-events/2020-04-13. [アクセス日: 30 10 2020].

[85] U.S. Department of Defense DARPA, “Teams Demonstrate Swarm Tactics in Fourth Major OFFSET Field Experiment, ” 18 9 2020. [ オ ン ラ イ ン ]. Available: https://www.darpa.mil/news-events/2020-09-18. [アクセス日: 30 10 2020].

[86] L. C. A. Pimenta, V. Kumar, R. C. Mesquita and G. A. S. Pereira, "Sensing and coverage for a network of heterogeneous robots," in 2008 47th IEEE Conference on Decision and Control, Cancun, Mexico, 2008.

[87] X. Han, L. Ma and K. Feng, "Distributed Coverage Control of Networked Heterogeneous Robots," in IEEE 6th Data Driven Control and Learning Systems Conference, Chongqing, China, 2017.

[88] Y. Kantaros, M. Thanou and A. Tzes, "Distributed coverage control for concave areas by a heterogeneous Robot–Swarm with visibility sensing constraints," Automatica, vol. 53, pp. 195- 207, 2015.

[89] C. Berger, M. Wzorek, J. Kvarnström, G. Conte, P. Doherty and A. Eriksson, "Area Coverage with Heterogeneous UAVs using Scan Patterns," in 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics, Lausanne, Switzerland, 2016.

[90] M. Saska, T. Krajnik, V. Vonasek, P. Vanek and L. Preucil, "Navigation, localization and stabilization of formations of unmanned aerial and ground vehicles," in 2013 International Conference on Unmanned Aircraft Systems, Atlanta, USA, 2013.

[91] M. Saska, V. Vonasek, T. Krajnik and L. Preucil, "Coordination and navigation of heterogeneous MAV–UGV formations localized by a ‘hawk-eye’-like approach under a model predictive control scheme," International Journal of Robotics Research, vol. 33, no. 10, pp. 1393-1412, 2014.

[92] D. R. Robinson, R. T. Mar, K. Estabridis and G. Hewer, "An Efficient Algorithm for Optimal Trajectory Generation for Heterogeneous Multi-Agent Systems in Non-Convex Environments," IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 1215-1222, 2018.

[93] H. Steinhaus and M. Kline, in Mathematical Snapshots. 3rd American ed. rev. and enl., Oxford University Press, 1983, pp. 75-83.

[94] 宮崎興二, 藤井道彦, 日置尋久 , 山口哲, 著: 不思議おもしろ幾何学事典, 朝倉書店, 2002, pp. 134-136.

[95] R. Williams, in The Geometrical Foundation of Natural Structure, 1979, pp. 35-43.

[96] 杉原厚吉, 著: 計算幾何学, 朝倉書店, 2013, pp. 53-56, 100-101.

[97] 杉原厚吉, 著: なわばりの数理モデル, 共立出版, 2009, pp. 73-76, 98-101.

[98] K. Kobayashi and K. Sugihara, "Crystal Voronoi Diagram and Its Applications," 京都大学数 理解析研究所講究録, vol. 1185, pp. 109-119, 2001.

[99] “S 4 Simulation System,” (株)NTT データ数理システム, [オンライン]. Available: https://www.msi.co.jp/s4/. [アクセス日: 29 1 2021].

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る