リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「広域海洋観測のための群知能海中ロボットシステムに関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

広域海洋観測のための群知能海中ロボットシステムに関する研究

小畠 かな子 大阪府立大学 DOI:info:doi/10.24729/00017847

2022.11.28

概要

本研究では,広域海洋観測のための群知能海中ロボットシステムを構築し,妥当性および長期運用の実現可能性を示すことを目指す。本論文は全6 章で構成される。以下に各章の概要を記す。

第 2 章では,運用する海洋調査機器について検討を行う。初めに提案する観測手法の概要を示す。そして提案手法を実現するために,任意の地点への移動が可能であることと,長期運用が可能であることを調査機の必要な性能とし,自律型水中グライダーおよび自律型洋上機の採用について,検討を行う。

第 3 章では,調査機の制御の設計および妥当性の検証を行う。調査機体は運用方法の違いにより,機体特性が大きく異なる。そこで,各機体の特性に応じた制御器を設計し,適用を試みる。そしてシミュレーションおよび実機試験を用いて制御器の妥当性を検証する。

第 4 章では,広域海洋観測を行うために必要となる,調査機器の行動決定方法の検討および妥当性の検証を行う。海中調査機器には複数の運用上の課題がある。これらの課題を踏まえ,効率的に運用するための行動決定方法を検討する。さらに複数の機器を効率的に運用するため,調査機器への群知能の適用を検討する。そして海洋観測を模した運用シミュレーションを用いて複数の行動決定方法と比較し,提案する行動決定方法の妥当性を検証する。

第 5 章では,日本の排他的経済水域を調査海域とした運用シミュレーションを行い,長期運用の実現可能性を検証する。初めに調査海域に対する観測に必要な機体数を推定する。そして長期運用方法の検討を行い,数年に亘る運用シミュレーションにて,長期運用の実現可能性を検証する。

第 6 章では本研究で得られた成果について要約し,記す。

以上の通り本研究では,広域観測システム構築のため,運用機体や運用手法の検討及び構築を行い,海洋観測を模擬した運用シミュレーションにて構築システムの妥当性および長期運用の実現可能性を明らかにする。

この論文で使われている画像

参考文献

[1] United Nations, “ Department of Economic and Social Affairs Sustainable Development ” , https://sdgs.un.org/goals ,(2022 年 5 月 10 日参照).

[2] A. R. Frost, A. P. McMaster, K. G. Saunders, and S. R. Lee, “The Development of a Remotely Operated Vehicle (ROV) for Aquaculture”, Journal of Aquacultural Engineering, Vol. 15, No. 6, pp. 461-483, 1996.

[3] J. N. Lygouras, K. A. Lalakos, G. Tsalides, “THETIS: an Underwater Remotely Operated Vehicle for Water Pollution Measurements”, Journal of Microprocessors and Microsystems, Vol. 22, Issue 5, pp. 227-237, 1998.

[4] A. J. Healey, and D. B. Marco, “Slow Speed Flight Control of Autonomous Underwater Vehicles: Experimental Results with Nps Auv II”, Proceedings of The Second International Offshore and Polar Engineering Conference, Paper No. ISOPE-I-92-172, pp. 523-532, 1992.

[5] K. Tamura, T. Aoki, T. Nakamura, S. Tsukioka, T. Murashima, H. Ochi, H. Nakajoh, T. Ida, and T. Hyakudome, “The Development of the AUV-Urashima”, Proceedings of OCEANS 2000 MTS/IEEE Conference and Exhibition, No. 00CH37158, 2000.

[6] R. B. Wynn, V. A. I. Huvenne, T. P. L. Bas, B. J. Murton, D. P. Connellya, B. J. Bett, H. A. Ruhl, K. J. Morris, J. Peakall, D. R. Parsons, E. J. Sumner, S. E. Darby, R. M. Dorrell, and J. E. Hunt, “Autonomous Underwater Vehicles (AUVs): Their Past, Present and Future Contributions to the Advancement of Marine Geoscience”, Journal of Marine Geology, Vol. 352, pp. 451-468, 2014.

[7] A. Sahoo, S. K. Dwivedy, P. S. Robi, “Advancements in the Field of Autonomous Underwater Vehicle”, Journal of Ocean Engineering, Vol. 181, pp. 145-160, 2019.

[8] E. Bovio, D. Cecchi, and F. Baralli, “Autonomous Underwater Vehicles for Scientific and Naval Operations”, Journal of Annual Reviews in Control, Vol. 30, Issue 2, pp. 117-130, 2006.

[9] M. Grasmueck, G. P. Eberli, D. A. Viggiano, T. Correa, G. Rathwell, and J. Luo, “Autonomous Underwater Vehicle (AUV) Mapping Reveals Coral Mound Distribution, Morphology, and Oceanography in Deep Water of the Straits of Florida”, Journal of Geophysical Research Letters, Vol. 33, L23616, 2006.

[10] P. Wadhams, and M. J. Doble, “Digital Terrain Mapping of the Underside of Sea Ice from a Small AUV”, Journal of Geophysical Research Letters, Vol. 35, L01501, 2008.

[11] T. Nakatani, S. Ishibashi, T. Hyakudome, M. Sugesawa, Y. Ota, H. Ochi, Y. Watanabe, T. Sawa, Y. Nakano, T. Kumagai, S. Sato, and H. Yoshida, “Working-AUV "Otohime" and Its Sea Trials at Sagami Bay”, Proceedings of 2013 IEEE International Underwater Technology Symposium, DOI: 10.1109/UT.2013.6519903, 2013.

[12] N. Gracias, P. Ridao, R. Garcia, J. Escartin, M. L’Hour, F. Cibecchini, R. Campos, M. Carreras, D. Ribas, N. Palomeras, L. Magi, A. Palomer, T. Nicosevici, R. Prados, R. Hegedus, L. Neumann, F. de Filippo, and A. Mallios, “Mapping the Moon: Using a Lightweight AUV to Survey the Site of the 17th Century Ship 'La Lune'”, Proceedings of 2013 MTS/IEEE OCEANS, DOI: 10.1109/OCEANS-Bergen.2013.6608142, 2013.

[13] Y. Kawada, and T. Kasaya, “Self-potential Mapping Using an Autonomous Underwater Vehicle for the Sunrise Deposit, Izu-Ogasawara Arc, Southern Japan”, Journal of Earth, Planets and Space, Vol. 70, No. 1, pp. 1-15, 2018.

[14] XPRIZE Foundation, “DISCOVERING THE MYSTERIES OF THE DEEP SEA”, https://www.xprize.org/prizes/ocean-discovery#prize-activity, (2022 年 5 月 10 日参照).

[15] T. Hyakudome, T. Sawa, Y. Nakano, Y. Watanabe, T. Fukuda, T. Nakatani, H. Matsumoto, R. Suga, H. Yoshida, H. Ochi, T. Shimura, K. Meguro, M. Deguchi, and T. Yoda, “Development of Prototype Autonomous Surface Vehicle”, Proceedings of 2016 Techno-Ocean, pp. 299-303, 2016.

[16] T. Nakatani, T. Hyakudome, T. Sawa, Y. Nakano, Y. Watanabe, T. Fukuda, H. Matsumoto, R. Suga, and H. Yoshida, “ASV MAINAMI for AUV Monitoring and Its Sea Trial”, Proceedings of 2016 IEEE/OES Autonomous Underwater Vehicles, pp. 301-306, 2016.

[17] T. Ohki, T. Nakatani, Y. Nishida, and B. Thornton, “Unmanned Seafloor Survey System without Support Vessel and its Recent Operations in Sea Trials”, Proceedings of 2019 IEEE Underwater Technology, DOI: 10.1109/UT.2019.8734296, 2019.

[18] N. Brown, “A Precision CTD Microprofiler”, Proceedings of Ocean '74 IEEE International Conference on Engineering in the Ocean Environment, Vol. 2, pp. 270-278, 1974.

[19] W. B. Owens, and R. C. Millard Jr., “A New Algorithm for CTD Oxygen Calibration”, Journal of Physical Oceanography, Vol. 15, pp. 621-631, 1985.

[20] R. E. Davis, L. A. Regier, J. Dufour, and D. C. Webb, “The Autonomous Lagrangian Circulation Explorer (ALACE)”, Journal of Atmospheric and Oceanic Technology, Vol. 9, Issue 3, pp. 264-285, 1992.

[21] D. S. Bitterman, and D. V. Hansen, “Evaluation of Sea Surface Temperature Measurements from Drifting Buoys”, Journal of Atmospheric and Oceanic Technology, Vol. 10, Issue 1, pp. 88-96, 1993.

[22] S. Wilson, “Launching the Argo armada,” Oceanus, Vol. 42, pp. 17-19, 2000.

[23] M. Ravichandran, P. N. Vinayachandran, S. Joseph and K. Radhakrishnan, “Results from the First Argo Float Deployed by India”, Journal of Current Science, Vol. 86, No. 5, pp. 651-659, 2004.

[24] S. Hosoda, T. Ohira, T. Nakamura, “A Monthly Mean Dataset of Global Oceanic Temperature and Salinity Derived from Argo Float Observations”, JAMSTEC Report of Research and Development, Vol. 8, pp. 47-59, 2008.

[25] 気象庁,“アルゴ計画リアルタイムデータベース” , https://ds.data.jma.go.jp/gmd/argo/data/indexJ.html, (2022 年 5 月 10 日参照).

[26] C. C. Eriksen, T. J. Osse, R. D. Light, T. Wen, T. W. Lehman, P. L. Sabin, J. W. Ballard, and A. M. Chiodi, “Seaglider: A Long-Range Autonomous Underwater Vehicle for Oceanographic Research”, Journal of Oceanic Engineering, Vol. 26, No. 4, pp. 424-436, 2001.

[27] J. Sherman, R. E. Davis, W. B. Owens, and J. Valdes, “The Autonomous Underwater Glider “Spray””, Journal of Oceanic Engineering, Vol. 26, No. 4, pp. 437-446, 2001.

[28] D. C. Webb, P. J. Simonetti, and C. P. Jones, “SLOCUM: An Underwater Glider Propelled by Environmental Energy”, Journal of Oceanic Engineering, Vol. 26, No. 4, pp. 447-452, October 2001.

[29] O. Schofield, T. Bergmann, P. Bissett, J. F. Grassle, D. B. Haidvogel, J. Kohut, M. Moline, and S. M. Glenn, “The Long-Term Ecosystem Observatory: An Integrated Coastal Observatory”, Journal of Oceanic Engineering, Vol. 27, No. 2, pp. 146-154, 2002.

[30] R. E. DAVIS, C. C. ERIKSEN, and C. P. JONES, “Autonomous Buoyancy-driven Underwater Gliders”, G. Griffiths (Ed.), The Technology and Application s of Autonomous Underwater Vehicles, Taylor and Francis, pp. 37-58, 2003.

[31] D. L. Rudnick, R. E. Davis, C. C. Eriksen, D. M. Fratantoni, and M. J. Perry, “Underwater Gliders for Ocean Research”, Journal of Marine Technology Society Journal, Vol. 38, No. 1, pp. 48-59, 2004.

[32] T. Daniel, J. Manley, and N. Trenaman, “The Wave Glider: Enabling a New Approach to Persistent Ocean Observation and Research”, Journal of Ocean Dynamics, Vol. 61, pp. 1509-1520, 2011.

[33] E. Fiorelli, P. Bhatta, and N. E. Leopnard, “Adaptive Sampling Using Feedback Control of an Autonomous Underwater Glider Fleet”, Proceedings of 13th Int. Symp. on Unmanned Untethered Submersible Technology, pp. 1-16, 2003.

[34] Y. Wang, W. Yan, and W. Yan, “A Leader-follower Formation Control Strategy for AUVs Based on Line-of-sight Guidance”, Proceedings of 2009 International Conference on Mechatronics and Automation, pp. 4863-4867, 2009.

[35] R. Cui, S. S. Ge, B. V. E. How, and Y. S. Choo, “Leader-follower Formation Control of Underactuated AUVs with Leader Position Measurement”, Proceedings of 2009 IEEE International Conference on Robotics and Automation, pp. 979-984, 2009.

[36] N. Burlutskiy, Y. Touahmi, and B. H. Lee, “Power Efficient Formation Configuration for Centralized Leader-follower AUVs Control”, Journal of Marine Science and Technology, Vol. 17, pp. 315-329, 2012.

[37] J. M. Soares, A. P. Aguiar, A. M. Pascoal, and A. Martinoli, “Joint ASV/AUV Range-based Formation Control: Theory and Experimental Results”, Proceedings of 2013 IEEE International Conference on Robotics and Automation, pp. 5579-5585, 2013.

[38] Z. Yan, Z. Yang, L. Yue, L. Wang, H. Jia, and J. Zhou, “Discrete-time Coordinated Control of Leader- following Multiple AUVs Under Switching Topologies and Communication Delays”, Journal of Ocean Engineering, Vol. 172, pp. 361-372, 2019.

[39] J. G. García, A. G. Espinosa, E. C. Urquizo, L. G. G. Valdovinos, T. S. Jiménez, and J. A. E. Cabello, “Autonomous Underwater Vehicles: Localization, Navigation, and Communication for Collaborative Missions”, Journal of Applied Science, Vol. 10, No. 4, pp. 1256-1293, 2020.

[40] K. Vestgård, “Underwater Navigation and Positioning Systems”, Arctic Underwater Operations, pp. 321-327, 1985.

[41] J. R. Higinbotham, P. G. Hitchener, J. R. Moisan, “Development of a New Long Duration Solar Powered Autonomous Surface Vehicle”, Proceedings of OCEANS 2006, DOI: 10.1109/OCEANS.2006.306874, 2006.

[42] J. Melo, A. Matos, “Guidance and Control of an ASV in AUV Tracking Operations”, Proceedings of OCEANS 2008, DOI: 10.1109/OCEANS.2008.5152003, 2008.

[43] M. Dunbabin, A. Grinham, and J. Udy, “An Autonomous Surface Vehicle for Water Quality Monitoring”, Proceedings of Australasian Conference on Robotics and Automation, 2009.

[44] M. Arima, K. Ishii, A. A. F. Nassiraei, “Development of the Ocean-going Underwater Glider with Independently Controllable Main Wings, SOARER”, Proceedings of the 21st International Offshore and Polar Engineering Conference, Vol. 2, pp. 274-278, 2011.

[45] M. Arima, H. Tonai, Y. Kosuga, “Underwater Glider ‘SOARER’ for Ocean Environmental Monitoring”, Proceedings of 2013 IEEE International Underwater Technology Symposium, DOI: 10.1109/UT.2013.6519878, 2013.

[46] M. Arima, A. Takeuchi, “Development of an Autonomous Surface Station for Underwater Passive Acoustic Observation of Marine Mammals”, Proceedings of OCEANS 2016, DOI: 10.1109/OCEANSAP.2016.7485551, 2016.

[47] JFE アドバンテック株式会社, “ RINKO シリーズ” , https://www.jfe-advantech.co.jp/products/ocean-rinko.html ,(2022 年 6 月 27 日参照).

[48] 大阪公立大学有馬研究室ホームページ,https://www.marine.osakafu-u.ac.jp/~arima/,(2022 年 6 月 27 日参照).

[49] intel,“インテル® NUC 7 ビジネス Windows® 10 Pro 搭載ミニ PC - NUC7i3DNKTC” https://www.intel.co.jp/content/www/jp/ja/products/sku/147969/intel-nuc-7-business-a-mini-pc-with- windows-10-pro-nuc7i3dnktc/specifications.html ,(2022 年 7 月 3 日参照).

[50] GNAS,“CSM-MG200”,https://www.gnas.jp/imu/products/csm-mg200/ ,(2022 年 7 月 3 日参照).

[51] NovAtel,“OEMV-1”,https://novatel.com/support/previous-generation-products-drop-down/previous-generation-products/oemv-1-receiver ,(2022 年 7 月 3 日参照).

[52] KELLER,“Series 33X”,https://keller-druck.com/ja/products/pressure-transmitters/standard-pressure- transmitters/serie-33x ,(2022 年 7 月 3 日参照).

[53] 中村 昌彦, 浅川 賢一, 百留 忠洋, 川谷 哲也, “ バーチャルモアリング用シャトルグライダー「ツクヨミ」の開発-水槽滑空試験-”, 日本海洋船舶海洋工学会論文集, Vol. 18, pp. 143-156, 2013.

[54] K. Kose, T. Saeki, “On a New Mathematical Model of Maneuvering Motions of a Ship”, The Society of Naval Architects of Japan, Vol. 1979, No. 146, pp. 229-236, 1979.

[55] M. Hirano, “On Calculation Method of Ship Maneuvering Motion at Initial Design Phase”, The Society of Naval Architects of Japan, Vol. 1980, No. 147, pp. 144-153, 1980.

[56] RT CORPORATION,“USB 出力 9 軸IMU センサモジュール”,https://rt-net.jp/products/usb9imu/ ,(2022 年 7 月 3 日参照)

[57] 秋月電子通商,“GPS受信機キット 1PPS 出力付き 「みちびき」2機受信対応”,https://akizukidenshi.com/catalog/g/gK-09991/ ,(2022 年 7 月 3 日参照).

[58] Dimension Engineering, “Sabertooth dual 5A motor driver”, https://www.dimensionengineering.com/products/sabertooth2x5,(2022 年 7 月 3 日参照).

[59] International Electrotechnical Commission, “Maritime Navigation and Radiocommunication Equipment and Systems, Track Control Systems, Operational and Performance Requirements, Methods of Testing and Required Test Results”, IEC62065, 2002.

[60] S. Inoue, M. Hirano, K. Kijima, “Hydrodynamic Derivatives on Ship Manoeuvring”, International Shipbuilding Progress, Vol. 28, No. 321, pp. 112-125, 1981.

[61] J. G. Ziegler and N. B. Nichols, “Optimum Setting for Automatic Controllers”, Journal of Transaction of ASME, Vol. 64, pp. 759-768, 1942.

[62] C. C. Hang, K. J. Astrom, and Q. G. Wang, “Relay Feedback Auto-tuning of Process Controllers”, Journal of Process Control, Vol. 12, No. 1, pp. 143-162, 2002.

[63] T. Nakatani, K. Ohtsu, T. Okazaki, and N. Moriyoshi, “A Study on Automatic Tuning of Ship’s Pid Regulator”, Proceedings of the 11th Ship Control Systems Symposium, pp. 183-201, 1997.

[64] 池田 雅夫, 須田 信英, “積分型最適サーボ系の構成”,計測自動制御学会論文集, Vol. 24, No. 1,pp. 40-46,1988.

[65] 海老原 格, 小笠原 英子, “海洋開発を支える水中音響通信”, 日本音響学会誌, Vol. 72, No. 8, pp. 471-476, 2016.

[66] H. P. Nii, “The Blackboard Model of Problem Solving and the Evolution of Blackboard Architectures”, AI Magazine, Vol. 7, No. 2, pp. 38-53, 1986.

[67] C. Petres, Y. Pailhas, P. Patron, Y. Petillot, J. Evans, D. Lane, “Path Planning for Autonomous Underwater Vehicles”, Journal of IEEE Transactions on Robotics, Vol. 23, Issue 2, pp. 331-341, 2007.

[68] N. K. Yilmaz, C. Evangelinos, P. F. J. Lermusiaux, N. M. Patrikalakis, “Path Planning of Autonomous Underwater Vehicles for Adaptive Sampling Using Mixed Integer Linear Programming”, Journal of Oceanic Engineering, Vol. 33, Issue 4, pp. 522-537, 2008.

[69] J. Cai, F. Zhang, S. Sun, T. Li, “A Meta-Heuristic Assisted Underwater Glider Path Planning Method”, Journal of Ocean Engineering, Vol. 242, Article No. 110121, 2021.

[70] A. Alvarez, A. Caiti, R. Onken, “Evolutionary Path Planning for Autonomous Underwater Vehicles in a Variable Ocean”, Journal of Oceanic Engineering, Vol. 29, Issue 2, pp. 418-429, 2004.

[71] A. Zamuda, J. Daniel, H. Sosa, “Differential Evolution and Underwater Glider Path Planning Applied to the Short-term Opportunistic Sampling of Dynamic Mesoscale Ocean Structures”, Journal of Applied Soft Computing, Vol. 24, pp. 95-108, 2014.

[72] G. Beni, and J. Wang, “Swarm Intelligence in Cellular Robotic Systems”, Proceedings of Robots and Biological Systems: Towards a New Bionics, pp. 703-712, 1993.

[73] E. Bonabeau, M. Dorigo, G. Theraulaz, “Swarm Intelligence from Natural to Artificial Systems”, Oxford University Press, 1999.

[74] 油田 信一, “複数の自律移動ロボットの協調行動”, 日本ロボット学会誌, Vol. 10, No. 4, pp. 433-438, 1992.

[75] 淺間 一, “複数の移動ロボットによる協調行動と群知能”, 計測と制御, Vol. 31, No. 11, pp. 1155-1161, 1992.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る