リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Structures and functions of penta-EF-hand calcium-binding proteins and their interacting partners: enigmatic relationships between ALG-2 and calpain-7」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Structures and functions of penta-EF-hand calcium-binding proteins and their interacting partners: enigmatic relationships between ALG-2 and calpain-7

Maki, Masatoshi 名古屋大学

2020

概要

The penta-EF-hand (PEF) protein family includes ALG-2 (gene name, PDCD6) and its paralogs as well as classical calpain family members. ALG-2 is a prototypic PEF protein that is widely distributed in eukaryotes and interacts with a variety of proteins in a Ca2+-dependent manner. Mammalian ALG-2 and its interacting partners have various modulatory roles including roles in cell death, signal transduction, membrane repair, ER-to-Golgi vesicular transport, and RNA processing. Some ALG-2-interacting proteins are key factors that function in the endosomal sorting complex required for transport (ESCRT) system. On the other hand, mammalian calpain-7 (CAPN7) lacks the PEF domain but contains two microtubule-interacting and trafficking (MIT) domains in tandem. CAPN7 interacts with a subset of ESCRT-III proteins through the MIT domains and regulates EGF receptor downregulation. Structures and functions of ALG-2 and those of its interacting partners as well as relationships with the calpain family are reviewed in this article.

この論文で使われている画像

参考文献

[1] In: Ross AC, Taylor CL, Yaktine AL, Del Valle HB, editors. Dietary Reference

Intakes for Calcium and Vitamin D. The National Academies Collection: Reports

funded by National Institutes of Health. Washington (DC) 2011. DOI:

10.17226/13050

[2] Neville MC. Calcium secretion into milk. J Mammary Gland Biol Neoplasia.

2005;10:119-128.

[3] Carafoli E, Krebs J. Why Calcium? How Calcium Became the Best Communicator.

J Biol Chem. 2016;291:20849-20857.

[4] Yanez M, Gil-Longo J, Campos-Toimil M. Calcium binding proteins. Adv Exp Med

Biol. 2012;740:461-482.

[5] Kawasaki H, Kretsinger RH. Structural and functional diversity of EF-hand proteins:

Evolutionary perspectives. Protein Sci. 2017;26:1898-1920.

[6] Cheung WY. Calmodulin plays a pivotal role in cellular regulation. Science.

1980;207:19-27.

[7] Hoeflich KP, Ikura M. Calmodulin in action: diversity in target recognition and

activation mechanisms. Cell. 2002;108:739-742.

[8] Sharma RK, Parameswaran S. Calmodulin-binding proteins: A journey of 40 years.

Cell Calcium. 2018;75:89-100.

12

[9] Ohno S, Emori Y, Imajoh S, Kawasaki H, Kisaragi M, Suzuki K. Evolutionary

origin of a calcium-dependent protease by fusion of genes for a thiol protease and

a calcium-binding protein? Nature. 1984;312:566-570.

[10] Sakihama T, Kakidani H, Zenita K, Yumoto N, Kikuchi T, Sasaki T, Kannagi R,

Nakanishi S, Ohmori M, Takio K, Titani K, Murachi T. A putative Ca2+-binding

protein: structure of the light subunit of porcine calpain elucidated by molecular

cloning

and

protein

sequence

analysis.

Proc

Natl

Acad

Sci

USA.

1985;82:6075-6079.

[11] Blanchard H, Grochulski P, Li Y, Arthur JS, Davies PL, Elce JS, Cygler M.

Structure of a calpain Ca2+-binding domain reveals a novel EF-hand and

Ca2+-induced conformational changes. Nat Struct Biol. 1997;4:532-538.

[12] Lin GD, Chattopadhyay D, Maki M, Wang KK, Carson M, Jin L, Yuen PW,

Takano E, Hatanaka M, DeLucas LJ, Narayana SV. Crystal structure of calcium

bound domain VI of calpain at 1.9 Å resolution and its role in enzyme assembly,

regulation, and inhibitor binding. Nat Struct Biol. 1997;4:539-547.

[13] Maki M, Narayana SV, Hitomi K. A growing family of the Ca2+-binding proteins

with five EF-hand motifs. Biochem J. 1997;328:718-720.

[14] Vito P, Lacanà E, D'Adamio L. Interfering with apoptosis: Ca2+-binding protein

ALG-2 and Alzheimer's disease gene ALG-3. Science. 1996;271:521-525.

[15] Maki M, Kitaura Y, Satoh H, Ohkouchi S, Shibata H. Structures, functions and

molecular evolution of the penta-EF-hand Ca2+-binding proteins. Biochim

Biophys Acta. 2002;1600:51-60.

[16] Goll DE, Thompson VF, Li H, Wei W, Cong J. The calpain system. Physiol Rev.

2003;83:731-801.

[17] Croall DE, Ersfeld K. The calpains: modular designs and functional diversity.

Genome Biol. 2007;8:218.

DOI:

10.1186/gb-2007-8-6-218

[18] Sorimachi H, Hata S, Ono Y. Impact of genetic insights into calpain biology. J

Biochem. 2011;150:23-37.

13

[19] Ono Y, Sorimachi H. Calpains: an elaborate proteolytic system. Biochim Biophys

Acta. 2012;1824:224-236.

[20] Suzuki K, Hata S, Kawabata Y, Sorimachi H. Structure, activation, and biology of

calpain. Diabetes. 2004;53:S12-S18.

[21] Suzuki K, Saido TC, Hirai S. Modulation of cellular signals by calpain. Ann NY

Acad Sci. 1992;674:218-227.

[22] Saido TC, Nagao S, Shiramine M, Tsukaguchi M, Yoshizawa T, Sorimachi H, Ito

H, Tsuchiya T, Kawashima S, Suzuki K. Distinct kinetics of subunit autolysis in

mammalian m-calpain activation. FEBS Lett. 1994;346:263-267.

[23] Glading A, Bodnar RJ, Reynolds IJ, Shiraha H, Satish L, Potter DA, Blair HC,

Wells A. Epidermal growth factor activates m-calpain (calpain II), at least in part,

by extracellular signal-regulated kinase-mediated phosphorylation. Mol Cell Biol.

2004;24:2499-2512.

[24] Ono Y, Ojima K, Shinkai-Ouchi F, Hata S, Sorimachi H. An eccentric calpain,

CAPN3/p94/calpain-3. Biochimie. 2016;122:169-187.

[25] Hoogewijs D, Ebner B, Germani F, Hoffmann FG, Fabrizius A, Moens L,

Burmester T, Dewilde S, Storz JF, Vinogradov SN, Hankeln T. Androglobin: a

chimeric globin in metazoans that is preferentially expressed in mammalian testes.

Mol Biol Evol. 2012;29:1105-1114.

[26] Kitaura Y, Watanabe M, Satoh H, Kawai T, Hitomi K, Maki M. Peflin, a novel

member of the five-EF-hand-protein family, is similar to the apoptosis-linked

gene 2 (ALG-2) protein but possesses nonapeptide repeats in the N-terminal

hydrophobic region. Biochem Biophys Res Commun. 1999;263:68-75.

[27] Maki M, Maemoto Y, Osako Y, Shibata H. Evolutionary and physical linkage

between

calpains

and

penta-EF-hand

Ca2+-binding

proteins.

FEBS

J.

2012;279:1414-1421.

[28] Maki M, Takahara T, Shibata H. Multifaceted Roles of ALG-2 in Ca2+-Regulated

Membrane

Trafficking.

Int

Mol

14

Sci.

2016;17.

pii:

E1401.

doi:

10.3390/ijms17091401.

[29] Ma J, Zhang X, Feng Y, Zhang H, Wang X, Zheng Y, Qiao W, Liu X. Structural and

Functional

Study

of

Apoptosis-linked

Gene-2·Heme-binding

Protein

Interactions in HIV-1 Production. J Biol Chem. 2016;291:26670-26685.

[30] Kanadome T, Shibata H, Kuwata K, Takahara T, Maki M. The calcium-binding

protein ALG-2 promotes endoplasmic reticulum exit site localization and

polymerization of Trk-fused gene (TFG) protein. FEBS J. 2017;284:56-76.

[31] Takahara T, Inoue K, Arai Y, Kuwata K, Shibata H, Maki M. The calcium-binding

protein ALG-2 regulates protein secretion and trafficking via interactions with

MISSL and MAP1B proteins. J Biol Chem. 2017;292:17057-17072.

[32] Takahara T, Arai Y, Kono Y, Shibata H, Maki M. A microtubule-associated

protein MAP1B binds to and regulates localization of a calcium-binding protein

ALG-2. Biochem Biophys Res Commun. 2018;497:492-498.

[33] Zhang W, Matsuo R, Takahara T, Shibata H, Maki M. High Sensitive Quantitative

Binding Assays Using a Nanoluciferase-Fused Probe for Analysis of

ALG-2-Interacting Proteins. Methods Mol Biol. 2019;1929:501-516. doi:

10.1007/978-1-4939-9030-6_31.

[34] Katoh K, Shibata H, Suzuki H, Nara A, Ishidoh K, Kominami E, Yoshimori T,

Maki M. The ALG-2-interacting protein Alix associates with CHMP4b, a human

homologue of yeast Snf7 that is involved in multivesicular body sorting. J Biol

Chem. 2003;278:39104-39113.

[35] Katoh K, Suzuki H, Terasawa Y, Mizuno T, Yasuda J, Shibata H, Maki M. The

penta-EF-hand protein ALG-2 interacts directly with the ESCRT-I component

TSG101, and Ca2+-dependently co-localizes to aberrant endosomes with

dominant-negative AAA ATPase SKD1/Vps4B. Biochem J. 2005;391:677-685.

[36] Ichioka F, Takaya E, Suzuki H, Kajigaya S, Buchman VL, Shibata H, Maki M.

HD-PTP and Alix share some membrane-traffic related proteins that interact with

their Bro1 domains or proline-rich

15

regions. Arch

Biochem

Biophys.

2007;457:142-149.

[37] Okumura M, Katsuyama AM, Shibata H, Maki M. VPS37 isoforms differentially

modulate the ternary complex formation of ALIX, ALG-2, and ESCRT-I. Biosci

Biotechnol Biochem. 2013;77:1715-1721.

[38] Okumura M, Takahashi T, Shibata H, Maki M. Mammalian ESCRT-III-related

protein IST1 has a distinctive Met-Pro repeat sequence that is essential for

interaction with ALG-2 in the presence of Ca2+. Biosci Biotechnol Biochem.

2013;77:1049-1054.

[39] Shibata H, Kanadome T, Sugiura H, Yokoyama T, Yamamuro M, Moss SE, Maki

M. A new role for annexin A11 in the early secretory pathway via stabilizing

Sec31A protein at the endoplasmic reticulum exit sites (ERES). J Biol Chem.

2015;290:4981-4993.

[40] Trioulier Y, Torch S, Blot B, Cristina N, Chatellard-Causse C, Verna JM, Sadoul R.

Alix, a protein regulating endosomal trafficking, is involved in neuronal death. J

Biol Chem. 2004;279:2046-2052.

[41] Shibata H, Yamada K, Mizuno T, Yorikawa C, Takahashi H, Satoh H, Kitaura Y,

Maki M. The penta-EF-hand protein ALG-2 interacts with a region containing

PxY repeats in Alix/AIP1, which is required for the subcellular punctate

distribution of the amino-terminal truncation form of Alix/AIP1. J Biochem.

2004;135:117-128.

[42] Draeby I, Woods YL, la Cour JM, Mollerup J, Bourdon JC, Berchtold MW. The

calcium binding protein ALG-2 binds and stabilizes Scotin, a p53-inducible gene

product localized at the endoplasmic reticulum membrane. Arch Biochem

Biophys. 2007;467:87-94.

[43] Shibata H, Suzuki H, Kakiuchi T, Inuzuka T, Yoshida H, Mizuno T, Maki M.

Identification of Alix-type and Non-Alix-type ALG-2-binding sites in human

phospholipid scramblase 3: differential binding to an alternatively spliced isoform

and amino acid-substituted mutants. J Biol Chem. 2008;283:9623-9632.

16

[44] Vergarajauregui S, Martina JA, Puertollano R. Identification of the penta-EF-hand

protein ALG-2 as a Ca2+-dependent interactor of mucolipin-1. J Biol Chem.

2009;284:36357-36366.

[45] Shibata H, Inuzuka T, Yoshida H, Sugiura H, Wada I, Maki M. The ALG-2

binding site in Sec31A influences the retention kinetics of Sec31A at the

endoplasmic reticulum exit sites as revealed by live-cell time-lapse imaging.

Biosci Biotechnol Biochem. 2010;74:1819-1826.

[46] Osugi K, Suzuki H, Nomura T, Ariumi Y, Shibata H, Maki M. Identification of the

P-body component PATL1 as a novel ALG-2-interacting protein by in silico and

far-Western screening of proline-rich proteins. J Biochem. 2012;151:657-666.

[47] Sasaki-Osugi K, Imoto C, Takahara T, Shibata H, Maki M. Nuclear ALG-2 protein

interacts with Ca2+ homeostasis endoplasmic reticulum protein (CHERP)

Ca2+-dependently and participates in regulation of alternative splicing of inositol

trisphosphate

receptor

type

(IP3R1)

pre-mRNA.

Biol

Chem.

2013;288:33361-33375.

[48] Takahashi T, Kojima K, Zhang W, Sasaki K, Ito M, Suzuki H, Kawasaki M,

Wakatsuki S, Takahara T, Shibata H, Maki M. Structural analysis of the complex

between penta-EF-hand ALG-2 protein and Sec31A peptide reveals a novel target

recognition mechanism of ALG-2. Int J Mol Sci. 2015;16:3677-3699.

[49] Suzuki H, Kawasaki M, Inuzuka T, Okumura M, Kakiuchi T, Shibata H,

Wakatsuki S, Maki M. Structural basis for Ca2+-dependent formation of

ALG-2/Alix peptide complex: Ca2+/EF3-driven arginine switch mechanism.

Structure. 2008;16:1562-1573.

[50] Pancsa R, Fuxreiter M. Interactions via intrinsically disordered regions: what kind

of motifs? IUBMB Life. 2012;64:513-520.

[51] Berlow RB, Dyson HJ, Wright PE. Functional advantages of dynamic protein

disorder. FEBS Lett. 2015;589:2433-2440.

[52] Mikasa T, Kugo M, Nishimura S, Taketani S, Ishijima S, Sagami I.

17

Thermodynamic Characterization of the Ca2+-Dependent Interaction Between

SOUL

and

ALG-2.

Int

Mol

Sci.

2018;19.

pii:

E3802.

doi:

10.3390/ijms19123802.

[53] Emori Y, Kawasaki H, Imajoh S, Imahori K, Suzuki K. Endogenous inhibitor for

calcium-dependent cysteine protease contains four internal repeats that could be

responsible for its multiple reactive sites. Proc Natl Acad Sci USA.

1987;84:3590-3594.

[54] Maki M, Takano E, Mori H, Sato A, Murachi T, Hatanaka M. All four internally

repetitive domains of pig calpastatin possess inhibitory activities against calpains I

and II. FEBS Lett. 1987;223:174-180.

[55] Takano E, Maki M, Mori H, Hatanaka M, Marti T, Titani K, Kannagi R, Ooi T,

Murachi T. Pig heart calpastatin: identification of repetitive domain structures and

anomalous behavior in polyacrylamide gel electrophoresis. Biochemistry.

1988;27:1964-1972.

[56] Maki M, Bagci H, Hamaguchi K, Ueda M, Murachi T, Hatanaka M. Inhibition of

calpain by a synthetic oligopeptide corresponding to an exon of the human

calpastatin gene. J Biol Chem. 1989 Nov 15;264:18866-9.

[57] Ma H, Yang HQ, Takano E, Lee WJ, Hatanaka M, Maki M. Requirement of

different subdomains of calpastatin for calpain inhibition and for binding to

calmodulin-like domains. J Biochem. 1993;113:591-599.

[58] Yang HQ, Ma H, Takano E, Hatanaka M, Maki M. Analysis of calcium-dependent

interaction between amino-terminal conserved region of calpastatin functional

domain and calmodulin-like domain of mu-calpain large subunit. J Biol Chem.

1994;269:18977-18984.

[59] Ma H, Yang HQ, Takano E, Hatanaka M, Maki M. Amino-terminal conserved

region in proteinase inhibitor domain of calpastatin potentiates its calpain

inhibitory activity by interacting with calmodulin-like domain of the proteinase. J

Biol Chem. 1994;269:24430-24436.

18

[60] Takano E, Ma H, Yang HQ, Maki M, Hatanaka M. Preference of

calcium-dependent interactions between calmodulin-like domains of calpain and

calpastatin subdomains. FEBS Lett. 1995;362:93-97.

[61] Todd B, Moore D, Deivanayagam CC, Lin GD, Chattopadhyay D, Maki M, Wang

KK, Narayana SV. A structural model for the inhibition of calpain by calpastatin:

crystal structures of the native domain VI of calpain and its complexes with

calpastatin peptide and a small molecule inhibitor. J Mol Biol. 2003;328:131-146.

[62] Moldoveanu T, Gehring K, Green DR. Concerted multi-pronged attack by

calpastatin to occlude the catalytic cleft of heterodimeric calpains. Nature.

2008;456:404-408.

[63] Hanna RA, Campbell RL, Davies PL. Calcium-bound structure of calpain and its

mechanism of inhibition by calpastatin. Nature. 2008;456:409-412.

[64] Kawasaki H, Mizutome H, Kretsinger RH. Interaction sites of PEF proteins for

recognition of their targets. Int J Biol Macromol. 2019;133:1035-1041.

[65] Hosfield CM, Elce JS, Davies PL, Jia Z. Crystal structure of calpain reveals the

structural basis for Ca2+-dependent protease activity and a novel mode of enzyme

activation. EMBO J. 1999;18:6880-6889.

[66] Strobl S, Fernandez-Catalan C, Braun M, Huber R, Masumoto H, Nakagawa K,

Irie A, Sorimachi H, Bourenkow G, Bartunik H, Suzuki K, Bode W. The crystal

structure of calcium-free human m-calpain suggests an electrostatic switch

mechanism for activation by calcium. Proc Natl Acad Sci USA. 2000;97:588-592.

[67] Jia J, Han Q, Borregaard N, Lollike K, Cygler M. Crystal structure of human

grancalcin, a member of the penta-EF-hand protein family. J Mol Biol.

2000;300:1271-1281.

[68] Jia J, Tarabykina S, Hansen C, Berchtold M, Cygler M. Structure of

apoptosis-linked protein ALG-2: insights into Ca2+-induced changes in

penta-EF-hand proteins. Structure. 2001;9:267-275.

[69] Xie X, Dwyer MD, Swenson L, Parker MH, Botfield MC. Crystal structure of

19

calcium-free human sorcin: a member of the penta-EF-hand protein family.

Protein Sci. 2001;10:2419-2425.

[70] Okumura M, Ichioka F, Kobayashi R, Suzuki H, Yoshida H, Shibata H, Maki M.

Penta-EF-hand protein ALG-2 functions as a Ca2+-dependent adaptor that bridges

Alix and TSG101. Biochem Biophys Res Commun. 2009;386:237-241.

[71] von Schwedler UK, Stuchell M, Müller B, Ward DM, Chung HY, Morita E, Wang

HE, Davis T, He GP, Cimbora DM, Scott A, Kräusslich HG, Kaplan J, Morham

SG, Sundquist WI. The protein network of HIV budding. Cell. 2003;114:701-713.

[72] Maki M, Suzuki H, Shibata H. Structure and function of ALG-2, a penta-EF-hand

calcium-dependent adaptor protein. Sci China Life Sci. 2011;54:770-779.

[73] McCullough J, Frost A, Sundquist WI. Structures, Functions, and Dynamics of

ESCRT-III/Vps4 Membrane Remodeling and Fission Complexes. Annu Rev Cell

Dev Biol. 2018;34:85-109.

[74] Christ L, Raiborg C, Wenzel EM, Campsteijn C, Stenmark H. Cellular Functions

and Molecular Mechanisms of the ESCRT Membrane-Scission Machinery. Trends

Biochem Sci. 2017;42:42-56.

[75] Woodman P. ESCRT-III on endosomes: new functions, new activation pathway.

Biochem J. 2016;473:e5-8. doi: 10.1042/BJ20151115.

[76] Weiss ER, Göttlinger H. The role of cellular factors in promoting HIV budding. J

Mol Biol. 2011;410:525-533.

[77] Agromayor M, Martin-Serrano J. Knowing when to cut and run: mechanisms that

control cytokinetic abscission. Trends Cell Biol. 2013;23:433-441.

[78] Nabhan JF, Hu R, Oh RS, Cohen SN, Lu Q. Formation and release of arrestin

domain-containing protein 1-mediated microvesicles (ARMMs) at plasma

membrane by recruitment of TSG101 protein. Proc Natl Acad Sci USA.

2012;109:4146-4151.

[79] Scheffer LL, Sreetama SC, Sharma N, Medikayala S, Brown KJ, Defour A, Jaiswal

JK. Mechanism of Ca2+-triggered ESCRT assembly and regulation of cell

20

membrane repair. Nat Commun. 2014;5:5646. doi: 10.1038/ncomms6646.

[80] Satoh H, Shibata H, Nakano Y, Kitaura Y, Maki M. ALG-2 interacts with the

amino-terminal domain of annexin XI in a Ca2+-dependent manner. Biochem

Biophys Res Commun. 2002;291:1166-1172.

[81] Satoh H, Nakano Y, Shibata H, Maki M. The penta-EF-hand domain of ALG-2

interacts with amino-terminal domains of both annexin VII and annexin XI in a

Ca2+-dependent manner. Biochim Biophys Acta. 2002;1600:61-67.

[82] Sønder SL, Boye TL, Tölle R, Dengjel J, Maeda K, Jäättelä M, Simonsen AC,

Jaiswal JK, Nylandsted J. Annexin A7 is required for ESCRT III-mediated plasma

membrane repair. Sci Rep. 2019;9:6726. doi: 10.1038/s41598-019-43143-4.

[83] Skowyra ML, Schlesinger PH, Naismith TV, Hanson PI. Triggered recruitment of

ESCRT machinery promotes endolysosomal repair. Science. 2018;360,eaar5078.

DOI: 10.1126/science.aar5078

[84] Radulovic M, Schink KO, Wenzel EM, Nähse V, Bongiovanni A, Lafont F,

Stenmark H. ESCRT-mediated lysosome repair precedes lysophagy and promotes

cell survival. EMBO J. 2018;37. pii: e99753. doi: 10.15252/embj.201899753.

[85] Shibata H. Adaptor functions of the Ca2+-binding protein ALG-2 in protein

transport from the endoplasmic reticulum. Biosci Biotechnol Biochem.

2019;83:20-32.

[86] Rayl M, Truitt M, Held A, Sargeant J, Thorsen K, Hay JC. Penta-EF-Hand Protein

Peflin Is a Negative Regulator of ER-To-Golgi Transport. PLoS One. 2016 Jun

8;11:e0157227. doi: 10.1371/journal.pone.0157227.

[87] McGourty CA, Akopian D, Walsh C, Gorur A, Werner A, Schekman R, Bautista D,

Rape M. Regulation of the CUL3 Ubiquitin Ligase by a Calcium-Dependent

Co-adaptor. Cell. 2016;167:525-538.

[88] Villalobo A, Ishida H, Vogel HJ, Berchtold MW. Calmodulin as a protein linker

and a regulator of adaptor/scaffold proteins. Biochim Biophys Acta Mol Cell Res.

2018;1865:507-521.

21

[89] Monroe N, Hill CP. Meiotic Clade AAA ATPases: Protein Polymer Disassembly

Machines. J Mol Biol. 2016;428:1897-1911.

[90] Yorikawa C, Takaya E, Osako Y, Tanaka R, Terasawa Y, Hamakubo T, Mochizuki

Y, Iwanari H, Kodama T, Maeda T, Hitomi K, Shibata H, Maki M. Human

calpain 7/PalBH associates with a subset of ESCRT-III-related proteins in its

N-terminal region and partly localizes to endocytic membrane compartments. J

Biochem. 2008;143:731-745.

[91] Osako Y, Maemoto Y, Tanaka R, Suzuki H, Shibata H, Maki M. Autolytic activity

of human calpain 7 is enhanced by ESCRT-III-related protein IST1 through

MIT-MIM interaction. FEBS J. 2010;277:4412-4426.

[92] Maeda T. The signaling mechanism of ambient pH sensing and adaptation in yeast

and fungi. FEBS J. 2012;279:1407-1413.

[93] Rodríguez-Galán O, Galindo A, Hervás-Aguilar A, Arst HN Jr, Peñalva MA.

Physiological involvement in pH signaling of Vps24-mediated recruitment of

Aspergillus

PalB

cysteine

protease

to

ESCRT-III.

Biol

Chem.

2009;284:4404-4412.

[94] Subramanian S, Woolford CA, Desai JV, Lanni F, Mitchell AP. cis- and

trans-acting localization determinants of pH response regulator Rim13 in

Saccharomyces cerevisiae. Eukaryot Cell. 2012;11:1201-1209.

[95] Maemoto Y, Kiso S, Shibata H, Maki M. Analysis of limited proteolytic activity of

calpain-7 using non-physiological substrates in mammalian cells. FEBS J.

2013;280:2594-2607.

[96] Maemoto Y, Osako Y, Goto E, Nozawa E, Shibata H, Maki M. Calpain-7 binds to

CHMP1B at its second alpha-helical region and forms a ternary complex with

IST1. J Biochem. 2011;150:411-421.

[97] Maemoto Y, Ono Y, Kiso S, Shibata H, Takahara T, Sorimachi H, Maki M.

Involvement of calpain-7 in epidermal growth factor receptor degradation via the

endosomal sorting pathway. FEBS J. 2014;281:3642-3655.

22

[98] Sadoul R, Laporte MH, Chassefeyre R, Chi KI, Goldberg Y, Chatellard C,

Hemming FJ, Fraboulet S. The role of ESCRT during development and

functioning of the nervous system. Semin Cell Dev Biol. 2018;74:40-49.

[99] Vincent O, Rainbow L, Tilburn J, Arst HN, Jr., Peñalva MA. YPXL/I is a protein

interaction motif recognized by Aspergillus PalA and its human homologue,

AIP1/Alix. Mol Cell Biol. 2003;23:1647-1655.

[100] Sun S, Zhou X, Corvera J, Gallick GE, Lin SH, Kuang J. ALG-2 activates the

MVB sorting function of ALIX through relieving its intramolecular interaction.

Cell Discov. 2015;1:15018. doi: 10.1038/celldisc.2015.18.

[101] Schöneberg J, Lee IH, Iwasa JH, Hurley JH. Reverse-topology membrane scission

by the ESCRT proteins. Nat Rev Mol Cell Biol. 2017;18:5-17.

[102] Schöneberg J, Pavlin MR, Yan S, Righini M, Lee IH, Carlson LA, Bahrami AH,

Goldman DH, Ren X, Hummer G, Bustamante C, Hurley JH. ATP-dependent

force generation and membrane scission by ESCRT-III and Vps4. Science.

2018;362:1423-1428.

23

Figure legends

Figure 1. Relationship between the penta-EF-hand (PEF) protein family and the calpain

family in mammals. Classical (typical) calpain sequences contain the PEF domain and

the calpain type β-sandwich domain (CBSW) in addition to the cysteine protease core

domain (CysPc), which is further divided into two subdomains named PC1 (containing

a catalytic Cys residue) and PC2 (containing catalytic His and Asn residues).

Conventional calpains (μ-calpain and m-calpain) are comprised of each catalytic large

subunit (designated CAPN1 for μ-calpain or CAPN2 for m-calpain) and a common

regulatory small subunit (CAPNS1). Non-classical (atypical) calpain sequences lack the

PEF domain but contain additional domains or motifs [calcium-binding C2 domain,

microtubule-interacting

and

trafficking

(MIT)

domain,

Zinc

finger

(ZnF),

SOL-homology domain (SOH), and circularly permutated globin domain (cpGB) split

by the calmodulin-binding IQ motif]. Calpain-3 (CAPN3), specifically expressed in

skeletal muscles, has distinct sequences: N-terminal sequence (NS), insertion sequence

1 (IS1), and insertion sequence 2 (IS2). Calpain-7 (CAPN7) is an ortholog of fungal

PalB. PEF proteins are classified into two groups based on similarity of the first

EF-hand (EF1) sequences [15].

Figure 2. Schematic structures of ALG-2-interacting proteins reported in the literature.

The human or murine ALG-2-interacting proteins are classified into five groups for

convenience sake based on functional properties: (a) ESCRT system, (b) ER-to-Golgi

vesicular transport, (c) RNA processing, (d) protein kinases, and (e) miscellaneous.

Underlined proteins have been studied in the author’s group. Red boxes and thick violet

bars indicate Pro-rich regions (PRRs) and determined ALG-2-binding regions,

respectively. PTP, phosphotyrosine phosphatase; UEV, ubiquitin E2 variant; CC,

coiled-coil; SB, steadiness box; LC1, light chain 1; CID, C-terminal domain

(CTD)-interacting domain; ZnF, zinc finger; RRM, RNA recognition motif; Ig-like C2,

24

immunoglobulin-like constant domain type 2; ANK, ankyrin; TM, transmembrane; C2,

Protein Kinase C C2-domain-like Ca2+-binding domain; vWFA, von Willebrand factor

A.

Figure 3. PEF-binding motifs and 3D structures. (a) Three types of Pro-rich

ALG-2-binding

motifs

(ABMs).

Residues

conserved

among

the

identified

ALG-2-interacting proteins in each type of ABM are indicated in red, and residues

compatible with the type 2 motif at the Ω position are indicated in violet. [PΦ], Pro or

hydrophobic; [FW], Phe or Trp; Ω, large side chain; x, variable. (b) Overall 3D structure

of the complex between ALG-2 (homodimer) and ALIX peptides (indicated by magenta

arrows) is shown by a cartoon in rainbow colors (from blue in the N-terminal region to

red in the C-terminal region) using the 3D presentation software PyMOL and Protein

Data Bank (PDB) code 2ZNE. (c) Overall 3D structure of the complex between ALG-2

and Sec31A peptides. PDB code 3WXA. A side view (left panel) and a 90°-rotated

bottom view (right panel). (d) Schematic representation of a three-binding-site model of

calpain inhibition by calpastatin. Among the three conserved regions of the four

repeated domains of calpastatin, region B binds the protease domain and inhibits the

proteolytic activity of calpain. Regions A and C bind the PEF domains of the large

subunit (L-PEF) and the small subunit (S-PEF), respectively. (e) Amino acid sequences

of regions A and C of human calpastatin. Conserved (identical or similar) residues are

highlighted in light green for region A and in cyan for region C. Conserved residues

between the two regions are marked with asterisks, where high conservation is indicated

by bold face. (f) Overall 3D structure of the complex between rat m-calpain and

calpastatin domain 1 (PDB code 3DF0). The PEF domains and the calpastatin peptide

are shown by cartoon models in rainbow colors and in magenta, respectively. Other

calpain domains are shown by surface representation in pale colors.

Figure 4. Schematic diagram of calpain-7 actions on ESCRT-mediated EGF receptor

25

downregulation in the endosome-to-lysosome pathway. Calpain-7 (CAPN7) is recruited

to endosomes after stimulation of cells with epidermal growth factor (EGF) and

regulates downregulation of the ubiquitinated and endocytosed EGF receptor (EGFR).

Calpain-7 interacts via the tandemly repeated microtubule-interacting and trafficking

(MIT) domains with a subset of ESCRT-III subunits (CHMP proteins) and related

proteins that contain MIT-interacting motifs (MIMs). ALG-2 interacts with IST1, a

CHMP-like protein, in a Ca2+-dependent manner at the Met-Pro repeat (MP) region.

Endogenous substrates of calpain-7 have not been identified yet. Fungal and yeast

orthologs of calpain-7 cleave ALIX-homolog-interacting transcription factors in

association with ESCRT-III proteins. VPS4 (isoforms A and B) and spastin, meiotic

clade AAA ATPases containing MIT domains, disassemble ESCRT-III polymers and

microtubules, respectively [101,102]. CHMP, charged multivesicular body protein;

MTBD, microtubule binding domain; MVB, multivesicular body; Ub, ubiquitin.

26

Table 1. Distribution of penta-EF-hand (PEF) proteins, classical calpains and calpain-7 orthologs in eukaryotes

PEF proteins and calpains

PEF proteins

ALG-2/PEF 1)

peflin

Protist

Plant

Yeast

Fungus

Nematode

Fly

Mammal

classical calpains

Large subunit

Small subunit

sorcin

grancalcin

CAPN7

calpain-7/PalB/Rim13 2)

1)

Names of homologs are different among organisms, and functions of mammalian ALG-2 are different from

those of lower eukaryotic homologs.

2)

PalB (fungus) and Rim13 (yeast) have similar functions of processing transcription factors involved in alkaline

adaptation system, but the physiological substrate of mammalian CAPN7 (calpain-7) has not been identified yet.

peflin

284

sorcin

198

grancalcin

217

CAPNS2

248

CAPNS1

268

CysPc

CAPN3

PalB subfamily

calpain family

CAPN1, 2, 8, 9,

11, 12, 13, 14

NS

PC1

PC2

HN

IS1

CBSW

669

- 739

IS2

821

C2

CAPN5, 6

640, 641

MIT MIT

CAPN7

813

CAPN10

672

ZnF

SOH

CAPN15

CAPN16

Figure 1

1086

cpGB

PC2’

1667

IQ

PEF protein family

191

Group II

calpain small subunits

ALG-2

Group I

PEF

ESCRT system

Bro1

ALIX

PRR

868

PTP

PEST

1636

HD-PTP

UEV

CC SB

390

TSG101

VPS37C

355

285

VPS37B

364

IST1

D Protein kinases

Tyr kinase

Ig-like C2 repeat

1356

VEGFR2

kinase

ER-to-Golgi vesicular transport

Sec31A

kinase

505

1220

245

E Miscellaneous

LC1

2464

MAP1B

648

Raf1

WD40 repeat

MISSL

kinase

1374

Death

1430

ANK repeat

DAPK1

annexin repeat

Annexin A11

Ask1

RNA processing

PLSCR3

Annexin A7

Tubby-like

295

TM

Scotin

240

annexin repeat

488

region C

770

PATL1

G-patch

916

CID

CHERP

ZnF RRM

RBM22

Figure 2

420

580

MCOLN1

C2 C2

HEBP2

SARAF

205

CPNE4

339

vWFA

557

ALG-2-binding motif (ABM)

Type 1: PPYPxxxxYP

ALIX

798-AQGPPYPTYPGYPGYC-813

PLSCR3

13-SPPPPYPVTPGYPEPA- 28

CHERP

562-FERPPYPHRFDYPQGD-577

ALIX

peptide

Type 2: [PΦ]Px[PΦ]G[FW]Ω

Sec31A

834-HGENPPPPGFIMHGNV-849

PLSCR3

40-AQVPAPAPGFALFPSP- 55

PATL1

306-GQMLPPAPGFRAFFSA-321

SARAF

219-NSAGPPPPGFKSEFTG-234

PDB 2ZNE

Type 3: MP repeats

IST1

226-GTVPMPMPMPMPSANT-241

811-GYCQMPMPMGYNPYAY-826

ALIX

Sec31A peptide

PDB 3WXA

E Regions A and C of calpastatin

calpain

CysPc

1A

2A

3A

4A

L-PEF

CBSW

PC1 PC2

S-PEF

calpastatin

1C

2C

3C

4C

ABC ABC ABC ABC

153-MDAALDDLIDTLGG

287-SDQALEALSASLGT

430-PDDAVEALADSLGK

567-LDDALDKLSDSLGQ

** ****** *

228-PDDAIDALSSDFTC

365-ESELIDELSEDFDR

508-EDFLLDALSEDFSG

647-DQDPIDALSGDLDS

L-PEF

calpain

L-PEF

calpastatin

region A

S-PEF

S-PEF

calpastatin

region C

CBSW

PC1

calpastatin

region A

PDB 3DF0

Figure 3

calpastatin

region C

PC2

calpain

CysPc

calpastatin

region B

MTBD

CHMP1

spastin

MP

IST1

VPS4

ALG-2

Ca2+

microtubule severing

Key

proteolysis

: MIT

: MIM

: interaction

calpain-7

Bro1

PRR

signaling &

modification?

ALIX

ALG-2

Ca2+

(CHMP4)

ESCRT-I

ESCRT-0 ESCRT-II

EGFR

Ub

Endosome

Figure 4

ESCRT-III

disassembly

inward

budding

Lysosome

degradation

ESCRT-III

(CHMPs)

MVB

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る