リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Aperture-Coupled Beam-Scanning Patch Array With Parasitic Elements Using a Reconfigurable Series-Fed Phase-Shifting Structure」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Aperture-Coupled Beam-Scanning Patch Array With Parasitic Elements Using a Reconfigurable Series-Fed Phase-Shifting Structure

Shao, Wenyi Yang, Bo Kamada, Hiroyuki Shinohara, Naoki 京都大学 DOI:10.1109/lawp.2023.3253822

2023.07

概要

In this letter, we propose a reconfigurable series-fed phase-shifting structure with movable metal plate for active millimeter wave beam-scanning application. The proposed phase-shifting structure can be equivalent to a certain number of phase shifters in the series-fed network. It can be easily controlled with only one metal plate, which further simplify the design of control system for phase shifters and reduce the cost. A prototype of 1-D aperture-coupled patch array with parasitic elements at 28GHz is designed, fabricated and measured for verifying the performance of the proposed phase-shifting structure. The measurement results at 28 GHz show 1-D beam-steering capability with maximum steering angle of ∼22 deg at H-plane can be achieved, revealing great potentials for developing the simple control and cost-effective active phased array for millimeter wave wireless power transmission application.

この論文で使われている画像

参考文献

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

C. H. Wu and T. G. Ma, "Pattern-Reconfigurable Self-Oscillating Active

Integrated Antenna with Frequency Agility," IEEE Trans. Antennas

Propag., vol. 62, no. 12, pp. 5992-5999, Dec. 2014.

H. Pablo Zapata Cano, Z. D. Zaharis, T. V. Yioultsis, N. V. Kantartzis and

P. I. Lazaridis, "Pattern Reconfigurable Antennas at Millimeter-Wave

Frequencies: A Comprehensive Survey," IEEE Access, vol. 10, pp.

83029-83042, Aug. 2022.

M. Wagih, G. S. Hilton, A. S. Weddell and S. Beeby,"Broadband

Millimeter-Wave Textile Based Flexible Rectenna for Wearable Energy

Harvesting," IEEE Trans. Microw. Theory Techn., vol. 68, no. 11, pp.

4960-4972, Nov. 2020.

T. A. Khan and R. W. Heath, "Wireless Power Transfer in Millimeter

Wave Tactical Networks," IEEE Signal Process. Lett., vol. 24, no. 9, pp.

1284-1287, Sept. 2017.

R. J. Mailloux, Phased Array Antenna Handbook, 2nd ed. Norwood, MA:

Artech House, 2005.

D. Parker and D. C. Zimmermann, "Phased arrays - part 1: theory and

architectures," IEEE Trans. Microw. Theory Techn., vol. 50, no. 3, pp.

678-687, Mar. 2002.

M. Nikfalazar et al., "Two-Dimensional Beam-Steering Phased-Array

Antenna with Compact Tunable Phase Shifter Based on BST Thick

Films," IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 585-588, July

2017.

J. Hu, Y. Li and Z. Zhang, "A Novel Reconfigurable Miniaturized Phase

Shifter for 2-D Beam Steering 2-Bit Array Applications," IEEE Microw.

Wireless Compon. Lett., vol. 31, no. 4, pp. 381-384, Apr. 2021.

N. Hasegawa and Y. Ohta, "2-Dimensional Simple Beam Steering for

Large-Scale Antenna on Microwave Power Transfer," IEEE Trans.

Microw. Theory Techn., vol. 70, no. 4, pp. 2432-2441, Apr. 2022.

S. I. M. Sheikh et al., "Analog/Digital Ferrite Phase Shifter for Phased

Array Antennas," IEEE Antennas Wireless Propag. Lett., vol. 9, pp.

319-321, Apr.2010.

K. Topalli, Ö. A. Civi, S. Demir, S. Koc and T. Akin, "A Monolithic

Phased Array Using 3-bit Distributed RF MEMS Phase Shifters," IEEE

Trans. Microw. Theory Techn., vol. 56, no. 2, pp. 270-277, Feb. 2008.

E. A. Soliman, A. Vasylchenko, V. Volski, W. D. Raedt and G. A. E.

Vandenbosch, "Sixteen-by-sixteen array of series-fed aperture-coupled

microstrip patch antenna array", Microw. Opt. Technol. Lett., vol. 53, no.

11, pp. 2705-2711, Nov. 2011.

S. H. Wi, Y. S. Lee and J. G. Yook, "Wideband Microstrip Patch Antenna

with U-Shaped Parasitic Elements," IEEE Trans. Antennas Propag., vol.

55, no. 4, pp. 1196-1199, Apr. 2007.

G. Kumar and K. Gupta, "Broadband Microstrip Antennas Using

Additional Resonators Gap-coupled to the Radiating Edges," IEEE Trans.

Antennas Propag., vol. 32, no. 12, pp. 1375-1379, Dec. 1984.

J. F. Lin and L. Zhu, "Bandwidth and Gain Enhancement of Patch

Antenna Based on Coupling Analysis of Characteristic Modes," IEEE

Trans. Antennas Propag., vol. 68, no. 11, pp. 7275-7286, Nov. 2020.

T. Y. Yun and K. Chang, "A Low-cost 8 to 26.5 GHz Phased Array

Antenna Using a Piezoelectric Transducer Controlled Phase Shifter,"

IEEE Trans. Antennas Propag., vol. 49, no. 9, pp. 1290-1298, Sept. 2001.

J. Wu et al., "Compact, Low-Loss, Wideband, and High-Power Handling

Phase Shifters with Piezoelectric Transducer-Controlled Metallic

Perturber," IEEE Trans. Microw. Theory Techn., vol. 60, no. 6, pp.

1587-1594, June 2012, doi: 10.1109/TMTT.2012.2189240.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る