リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Carbon footprint assessment of a whole dairy farming system with a biogas plant and the use of solid fraction of digestate as a recycled bedding material」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Carbon footprint assessment of a whole dairy farming system with a biogas plant and the use of solid fraction of digestate as a recycled bedding material

Setoguchi, Akira Oishi, Kazato Kimura, Yoshiaki Ogino, Akifumi Kumagai, Hajime Hirooka, Hiroyuki 京都大学 DOI:10.1016/j.rcradv.2022.200115

2022.11

概要

Biogas generated from livestock manure is a renewable energy source and the digestate is used as a fertilizer. Moreover, dewatered biogas digestate can be used as a bedding material (recycled bedding material). The aims of the present study were to model a whole dairy system with a biogas plant using recycled bedding material and to assess the life cycle greenhouse gas (GHG) emissions. Emissions from the material flow of dairy cattle production, manure treatment and organic fertilizer application to on-farm crops were evaluated. In the emissions from organic fertilizer storage and recycled bedding material production, CH4 emission was decreased by 43.0%, and consequently the system with a biogas plant reduced total GHG emissions by 6.8% compared with conventional slurry storage and straw bedding. The use of recycled bedding material from a biogas plant has the potential to create a resource cycle and to be beneficial as a GHG mitigation strategy.

参考文献

Agriculture, Forestry and Fisheries Technology Information Society (AFFTIS), 2000. Investigation of Energy-Managing Agricultural Production System Development (in Japanese). AFFTIS, Tokyo.

Amon, B., Kryvoruchko, V., Amon, T., Zechmeister-Boltenstern, S., 2006. Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment. Agric. Ecosyst. Environ. 112, 153–162. https://doi.org/10.1016/j.agee.2005.08.030.

Bacenetti, J., Bava, L., Zucali, M., Lovarelli, D., Sandrucci, A., Tamburini, A., Fiala, M., 2016. Anaerobic digestion and milking frequency as mitigation strategies of the environmental burden in the milk production system. Sci. Total Environ. 539, 450–459. https://doi.org/10.1016/j.scitotenv.2015.09.015.

Battini, F., Agostini, A., Boulamanti, A.K., Giuntoli, J., Amaducci, S., 2014. Mitigating the environmental impacts of milk production via anaerobic digestion of manure: case study of a dairy farm in the Po Valley. Sci. Total Environ. 481, 196–208. https://doi.org/10.1016/j.scitotenv.2014.02.038.

Burg, V., Bowman, G., Haubensak, M., Baier, U., Thees, O., 2018. Valorization of an untapped resource: energy and greenhouse gas emissions benefits of converting manure to biogas through anaerobic digestion. Resour. Conserv. Recycl. 136, 53–62. https://doi.org/10.1016/j.resconrec.2018.04.004.

Cao, Y., Wang, X., Bai, Z., Chadwick, D., Misselbrook, T., Sommer, S.G., Qin, W., Ma, L., 2019. Mitigation of ammonia, nitrous oxide and methane emissions during solid waste composting with different additives: a meta-analysis. J. Clean. Prod. 235, 626–635. https://doi.org/10.1016/j.jclepro.2019.06.288.

Chantigny, M.H., Angers, D.A., Rochette, P., B´elanger, G., Mass´e, D., Coˆt´e, D., 2007. Gaseous nitrogen emissions and forage nitrogen uptake on soils fertilized with raw and treated swine manure. J. Environ. Qual. 36, 1864–1872. https://doi.org/ 10.2134/jeq2007.0083.

Choumei, Y., Kahi, A.K., Hirooka, H., 2006. Fit of Wood’s function to weekly records of milk yield, total digestible nutrient intake and body weight changes in early lactation of multiparous Holstein cows in Japan. Livest. Sci. 104, 156–164. https:// doi.org/10.1016/j.livsci.2006.04.015.

Department of Agriculture, Hokkaido Government, 2020. Hokkaido Fertilizer Recommendations 2020 (In Japanese). https://www.pref.hokkaido.lg.jp/fs/5/4/4/ 7/0/6/9/_/V%E7%89%A7%E8%8D%89%E3%83%BB%E9%A3%BC%E6%96%99%E4%BD%9C%E7%89%A9.pdf. (accessed 18 April 2022).

Ebner, J.H., Labatut, R.A., Rankin, M.J., Pronto, J.L., Gooch, C.A., Williamson, A.A., Trabold, T.A., 2015. Lifecycle greenhouse gas analysis of an anaerobic codigestion facility processing dairy manure and industrial food waste. Environ. Sci. Technol. 49, 11199–11208. https://doi.org/10.1021/acs.est.5b01331.

Esteves, E.M.M., Herrera, A.M.N., Esteves, V.P.P., Morgado, C.do R.V., 2019. Life cycle assessment of manure biogas production: a review. J. Clean. Prod. 219, 411–423. https://doi.org/10.1016/j.jclepro.2019.02.091.

Evonik Industries AG, 2021. Rumen-protected DL-Methionine Mepron® https://anim al-nutrition.evonik.com/en/products/methionine-and-derivatives/mepron (accessed 16 October 2021).

Fillingham, M.A., VanderZaag, A.C., Burtt, S., Bald´e, H., Ngwabie, N.M., Smith, W., Hakami, A., Wagner-Riddle, C., Bittman, S., MacDonald, D., 2017. Greenhouse gas and ammonia emissions from production of compost bedding on a dairy farm. Waste Manag. 70, 45–52. https://doi.org/10.1016/j.wasman.2017.09.013.

Finzi, A., Mattachini, G., Lovarelli, D., Riva, E., Provolo, G., 2020. Technical, economic, and environmental assessment of a collective integrated treatment system for energy recovery and nutrient removal from livestock manure. Sustain 12, 2756. https://doi. org/10.3390/su12072756.

Garcia-Launay, F., van der Werf, H.M.G., Nguyen, T.T.H., le Tutour, L., Dourmad, J.Y., 2014. Evaluation of the environmental implications of the incorporation of feed-use amino acids in pig production using life cycle assessment. Livest. Sci. 161, 158–175. https://doi.org/10.1016/j.livsci.2013.11.027.

Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., Tempio, G., 2013. Tackling Climate Change Through livestock: a Global Assessment of Emissions and Mitigation Opportunities. Food and Agriculture Organization of the United Nations (FAO). https://www.fao.org/3/i3437e/i3437e00.htm (accessed 16 October 2021).

Guest, G., Smith, W., Grant, B., VanderZaag, A., Desjardins, R., McConkey, B., 2017. A comparative life cycle assessment highlighting the trade-offs of a liquid manure separator-composter in a Canadian dairy farm system. J. Clean. Prod. 143, 824–835. https://doi.org/10.1016/j.jclepro.2016.12.041.

Hishinuma, T., Hohiba, S., Morita, S., Tshukada, Y., Amano, T., 2002. Evaluation of a biogas plant on farm from the energetic point of view (in Japanese). Nogyo Shisetsu (J. Society of Agricultural Structures, Japan) 33, 45–52. https://doi.org/10.11449/ sasj1971.33.45.

Hishinuma, T., Kurishima, H., Yang, C., Genchi, Y., 2008. Environmental impact of manure treatment and utilization system with biogas plant by life cycle assessment method : comparison with other systems (in Japanese). Anim. Behav. Manag. 44, 7–20. https://doi.org/10.20652/abm.44.1_7.

Holm-Nielsen, J.B., AI Seadi, T., Oleskowicz-Popiel, P., 2009. The future of anaerobic digestion and biogas utilization. Bioresour. Technol. 100, 5478–5484. https://doi. org/10.1016/j.biortech.2008.12.046.

Intergovernmental Panel on Climate Change (IPCC), 2006. IPCC Guidelines For National Greenhouse Gas Inventories. IPCC/IGES, Hayama, Japan. https://www.ipcc-nggip. iges.or.jp/public/2006gl/vol4.html (accessed 16 October 2021).

Intergovernmental Panel on Climate Change (IPCC), 2007. Climate change 2007: the physical science basis. https://www.ipcc.ch/report/ar4/wg1/ (accessed 16 October 2021).

International Dairy Federation (IDF), 2010. Bulletin of the IDF No 445/2010. A common Carbon Footprint Approach For dairy. The IDF Guide to Standard Lifecycle Assessment Methodology For the Dairy Sector. International Dairy Federation, Brussels, Belgium.

International Organization for Standardization (ISO), 2006. Environmental Management – Life cycle assessment: Principles and Framework. International Organization for Standardization (ISO), Switzerland.

Kimura, Y., Suzuki, T., Yasui, S., Ishii, K., Kaziyama, T., Oishi, K., Ogino, A., Hinata, T., Hirooka, H., Osada, T., Fujita, H., 2020. Simulation of livestock biomass resource recycling and energy utilization model based on dry type methane fermentation system. IOP Conference Series: Earth Environ. Sci. 460, 012020 https://doi.org/ 10.1088/1755-1315/460/1/012020.

Leach, K.A., Archer, S.C., Breen, J.E., Green, M.J., Ohnstad, I.C., Tuer, S., Bradley, A.J., 2015. Recycling manure as cow bedding: potential benefits and risks for UK dairy farms. Vet. J. 206, 123–130. https://doi.org/10.1016/j.tvjl.2015.08.013.

Lee, C., Hristov, A.N., Cassidy, T.W., Heyler, K.S., Lapierre, H., Varga, G.A., de Veth, M. J., Patton, R.A., Parys, C., 2012. Rumen-protected lysine, methionine, and histidine increase milk protein yield in dairy cows fed a metabolizable protein-deficient diet. J. Dairy Sci. 95, 6042–6056. https://doi.org/10.3168/jds.2012-5581.

Lee, C., Giallongo, F., Hristov, A.N., Lapierre, H., Cassidy, T.W., Heyler, K.S., Varga, G.A., Parys, C., 2015. Effect of dietary protein level and rumen-protected amino acid supplementation on amino acid utilization for milk protein in lactating dairy cows. J. Dairy Sci. 98, 1885–1902. https://doi.org/10.3168/jds.2014-8496.

Mass´e, D.I., Talbot, G., Gilbert, Y., 2011. On farm biogas production: a method to reduce GHG emissions and develop more sustainable livestock operations. Anim. Feed Sci. Technol. 166–167, 436–445. https://doi.org/10.1016/j.anifeedsci.2011.04.075.

Ministry of Agriculture, Forestry and Fisheries (MAFF), 2022. Livestock production costs, survey of agricultural management statistics (in Japanese). https://www.e-stat.go. jp/stat-search/file-download?statInfId=000032183840&fileKind=0 (accessed 15 April 2022).

Ministry of the Environment (MOE), 2020. National greenhouse gas inventory report of Japan. https://www.nies.go.jp/gio/archive/nir/jqjm1000000pcibe-att/ NIR-JPN-2020-v3.0_GIOweb.pdf (accessed 16 October 2021).

Namuli, R., Pillay, P., Jaumard, B., Laflamme, C.B., 2013. Threshold herd size for commercial viability of biomass waste to energy conversion systems on rural farms. Appl. Energy 108, 308–322. https://doi.org/10.1016/j.apenergy.2013.03.037.

National Agriculture and Food Research Organization (NARO), 2010. Standard Tables of Feed Composition in Japan, 2009 (in Japanese). Japan Livestock Industry Association, Tokyo.

National Agriculture and Food Research Organization (NARO), 2017. Japanese Feeding Standard For Dairy Cattle (in Japanese). Japan Livestock Industry Association, Tokyo.

National Research Council (NRC), 2001. Nutrient Requirements of Dairy cattle: 2001.

National Academies Press, Washington, DC. https://doi.org/10.17226/9825. New Energy and Industrial Technology Development Organization (NEDO), 2015. Guidebook For the Introduction of Biomass Energy (in Japanese). https://www.nedo.go.jp/library/biomass_guidebook.html (accessed 16 October 2021).

Ogino, A., Ishida, M., Ishikawa, T., Ikeguchi, A., Waki, M., Yokoyama, H., Tanaka, Y., Hirooka, H., 2008. Environmental impacts of a Japanese dairy farming system using whole-crop rice silage as evaluated by life cycle assessment. Anim. Sci. J. 79, 727–736. https://doi.org/10.1111/j.1740-0929.2008.00587.x.

Ogino, A., Ishida, M., Ohmori, H., Tanaka, Y., Yamashita, T., Yokoyama, H., Tatsugawa, K., Ijiri, S., Kawashima, T., 2012. Life cycle assessment of animal feeds prepared from liquid food residues: a case study of rice-washing water. J. Environ. Qual. 41, 1982–1988. https://doi.org/10.2134/jeq2011.0442.

Ogino, A., Osada, T., Takada, R., Takagi, T., Tsujimoto, S., Tonoue, T., Matsui, D., Katsumata, M., Yamashita, T., Tanaka, Y., 2013. Life cycle assessment of Japanese pig farming using low-protein diet supplemented with amino acids. Soil Sci. Plant Nutr. 59, 107–118. https://doi.org/10.1080/00380768.2012.730476.

Oishi, K., Kato, Y., Ogino, A., Hirooka, H., 2013. Economic and environmental impacts of changes in culling parity of cows and diet composition in Japanese beef cow–calf production systems. Agric. Syst. 115, 95–103. https://doi.org/10.1016/j. agsy.2012.09.007.

Okamoto, E., Miyanishi, H., Nakamura, A., Kobayashi, T., Kobayashi, N., Terawaki, Y., Nagahata, H., 2018. Bacteriological evaluation of composted manure solids prepared from anaerobic digested slurry for hygienic recycled bedding materials for dairy cows. Anim. Sci. J. 89, 727–732. https://doi.org/10.1111/asj.12962.

Paolini, V., Petracchini, F., Segreto, M., Tomassetti, L., Naja, N., Cecinato, A., 2018. Environmental impact of biogas: a short review of current knowledge. J. Environ. Sci. Health, Part A 53, 899–906. https://doi.org/10.1080/10934529.2018.1459076.

Pelletier, N., 2008. Environmental performance in the US broiler poultry sector: life cycle energy use and greenhouse gas, ozone depleting, acidifying and eutrophying emissions. Agric. Syst. 98, 67–73. https://doi.org/10.1016/j.agsy.2008.03.007.

Pirlo, G., Car`e, S., Fantin, V., Falconi, F., Buttol, P., Terzano, G.M., Masoni, P., Pacelli, C., 2014. Factors affecting life cycle assessment of milk produced on 6 Mediterranean buffalo farms. J. Dairy Sci. 97, 6583–6593. https://doi.org/10.3168/jds.2014-8007.

Pukˇsec, T., Dui´c, N., 2012. Economic viability and geographic distribution of centralized biogas plants: case study Croatia. Clean Technol. Environ. Policy 14, 427–433. https://doi.org/10.1007/s10098-012-0460-y.

Richards, F.J., 1959. A Flexible growth function for empirical use. J. Exp. Bot. 10, 290–301. https://doi.org/10.1093/jxb/10.2.290.

Rowbotham, R.F., Ruegg, P.L., 2015. Association of bedding types with management practices and indicators of milk quality on larger Wisconsin dairy farms. J. Dairy Sci. 98, 7865–7885. https://doi.org/10.3168/jds.2015-9866.

Sekine, J., Kondo, S., Okubo, M., Asahida, Y., 1986. Estimation of methane production in 6-week-weaned calves up to 25 weeks of age (in Japanese). Jpn. J. Zootech. Sci. 57, 300–304. https://doi.org/10.2508/chikusan.57.300.

Shibata, M., Terada, F., Kurihara, M., Nishida, T., Iwasaki, K., 1993. Estimation of methane production in ruminants. Anim. Sci. Technol. 64, 790–796. https://doi.org/ 10.2508/chikusan.64.790.

Springmann, M., Clark, M., Mason-D’Croz, D., Wiebe, K., Bodirsky, B.L., Lassaletta, L., de Vries, W., Vermeulen, S.J., Herrero, M., Carlson, K.M., Jonell, M., Troell, M., DeClerck, F., Gordon, L.J., Zurayk, R., Scarborough, P., Rayner, M., Loken, B., Fanzo, J., Godfray, H.C.J., Tilman, D., Rockstro¨m, J., Willett, W., 2018. Options for keeping the food system within environmental limits. Nature 562, 519–525. https:// doi.org/10.1038/s41586-018-0594-0.

Turner, I., Heidari, D., Pelletier, N., 2022. Life cycle assessment of contemporary Canadian egg production systems during the transition from conventional cage to alternative housing systems: update and analysis of trends and conditions. Resour. Conserv. Recycl. 176, 105907 https://doi.org/10.1016/j.resconrec.2021.105907.

Uddin, M.E., Aguirre-Villegas, H.A., Larson, R.A., Wattiaux, M.A., 2021. Carbon footprint of milk from Holstein and Jersey cows fed low or high forage diet with alfalfa silage or corn silage as the main forage source. J. Clean. Prod. 298, 126720 https://doi. org/10.1016/j.jclepro.2021.126720.

United Nations Framework Convention on Climate Change (UNFCCC), 2015. Adoption of the Paris Agreement. Report No. FCCC/CP/2015/L.9/Rev.1 https://unfccc.int/resou rce/docs/2015/cop21/eng/l09r01.pdf (accessed 16 October 2021).

Veysset, P., Lherm, M., B´ebin, D., 2010. Energy consumption, greenhouse gas emissions and economic performance assessments in French Charolais suckler cattle farms: model-based analysis and forecasts. Agric. Syst. 103, 41–50. https://doi.org/ 10.1016/j.agsy.2009.08.005.

Wang, X., Yang, G., Feng, Y., Ren, G., Han, X., 2012. Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresour. Technol. 120, 78–83. https:// doi.org/10.1016/j.biortech.2012.06.058.

Wood, P.D.P., 1967. Algebraic model of the lactation curve in cattle. Nature 216, 164–165. https://doi.org/10.1038/216164a0.

Yiridoe, E.K., Gordon, R., Brown, B.B., 2009. Nonmarket cobenefits and economic feasibility of on-farm biogas energy production. Energy Policy 37, 1170–1179. https://doi.org/10.1016/j.enpol.2008.11.018.

Zilio, M., Orzi, V., Chiodini, M.E., Riva, C., Acutis, M., Boccasile, G., Adani, F., 2020. Evaluation of ammonia and odour emissions from animal slurry and digestate storage in the Po Valley (Italy). Waste Manag 103, 296–304. https://doi.org/ 10.1016/j.wasman.2019.12.038.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る