リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Effects of Pauli blocking on pion production in central collisions of neutron-rich nuclei」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Effects of Pauli blocking on pion production in central collisions of neutron-rich nuclei

Natsumi Ikeno Akira Ono Yasushi Nara Akira Ohnishi 東北大学 DOI:10.1103/PhysRevC.101.034607

2020.03.13

概要

Pauli blocking is carefully investigated for the processes of NN ↔ N∆ and ∆ → Nπ in heavy-ion collisions, aiming at a more precise prediction of the π −/π + ratio which is an important observable to constrain the high- density symmetry energy. We use the AMD JAM approach, which combines the antisymmetrized molecular dynamics for the time evolution of nucleons and the Jet AA Microscopic transport model to treat processes for ∆ resonances and pions. As is known in general transport-code simulations, it is difficult to treat Pauli blocking very precisely due to unphysical fluctuations and additional smearing of the phase-space distribution function, when Pauli blocking is treated in the standard method of JAM. We propose an improved method in AMD JAM to use the Wigner function precisely calculated in AMD as the blocking probability. Different Pauli blocking methods are compared in heavy-ion collisions of neutron-rich nuclei, 132Sn 124Sn, at 270 MeV/nucleon. With the more accurate method, we find that Pauli blocking is stronger, in particular for the neutron in the final state in NN N∆ and ∆ Nπ , compared to the case with a proton in the final state. Consequently, the π −/π + ratio becomes higher when the Pauli blocking is improved, the effect of which is found to be comparable to the sensitivity to the high-density symmetry energy.

参考文献

[1] C. Horowitz, E. Brown, Y. Kim, W. Lynch, R. Michaels, A. Ono, J. Piekarewicz, M. Tsang, and H. Wolter, J. Phys. G 41, 093001 (2014).

[2] B. Abbott, R. Abbott, T. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. Adhikari, V. Adya et al., Phys. Rev. Lett. 121, 161101 (2018).

[3] B.-A. Li, L.-W. Chen, and C. M. Ko, Phys. Rep. 464, 113 (2008).

[4] B.-A. Li, Phys. Rev. Lett. 88, 192701 (2002).

[5] B.-A. Li, Nucl. Phys. A 708, 365 (2002).

[6] B.-A. Li, Phys. Rev.C 67, 017601 (2003).

[7] N. Ikeno, A. Ono, Y. Nara, and A. Ohnishi, Phys. Rev. C 93, 044612 (2016).

[8] N. Ikeno, A. Ono, Y. Nara, and A. Ohnishi, Phys. Rev. C 97, 069902(E) (2018).

[9] A. Ono, H. Horiuchi, T. Maruyama, and A. Ohnishi, Prog. Theor. Phys. 87, 1185 (1992).

[10] Y. Nara, N. Otuka, A. Ohnishi, K. Niita, and S. Chiba, Phys. Rev. C 61, 024901 (1999).

[11] T. Gaitanos, M. Di Toro, S. Typel, V. Baran, C. Fuchs, V. Greco, and H. Wolter, Nucl. Phys. A 732, 24 (2004).

[12] W. Reisdorf, M. Stockmeier, A. Andronic, M. Benabderrahmane, O. Hartmann, N. Herrmann, K.

[13] Z. Xiao, B.-A. Li, L.-W. Chen, G.-C. Yong, and M. Zhang, Phys. Rev. Lett. 102, 062502 (2009).

[14] Z.-Q. Feng and G.-M. Jin, Phys. Lett. B 683, 140 (2010).

[15] J. Hong and P. Danielewicz, Phys. Rev. C 90, 024605 (2014).

[16] W.-M. Guo, G.-C. Yong, and W. Zuo, Phys. Rev. C 90, 044605 (2014).

[17] J. Xu, L.-W. Chen, M. B. Tsang, H. Wolter, Y.-X. Zhang, J. Aichelin, M. Colonna, D. Cozma, P. Danielewicz, Z.-Q. Feng et al. Phys. Rev. C 93, 044609 (2016).

[18] Y.-X. Zhang, Y.-J. Wang, M. Colonna, P. Danielewicz, A. Ono, M. B. Tsang, H. Wolter, J. Xu, L.-W. Chen, D. Cozma et al., Phys. Rev.C 97, 034625 (2018).

[19] A. Ono, J. Xu, M. Colonna, P. Danielewicz, C. M. Ko, M. B. Tsang, Y.-J. Wang, H. Wolter, Y.-X. Zhang, L.-W. Chen et al., Phys. Rev.C 100, 044617 (2019).

[20] J. Aichelin, Phys. Rep. 202, 233 (1991).

[21] M. Colonna, M. Di Toro, A. Guarnera, S. Maccarone, M. Zielinska-Pfabé, and H. Wolter, Nucl. Phys. A 642, 449 (1998).

[22] P. Napolitani and M. Colonna, Phys. Lett. B 726, 382 (2013).

[23] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer, Nucl. Phys. A 635, 231 (1998); 643, 441(E) (1998).

[24] W. Reisdorf, A. Andronic, R. Averbeck, M. Benabderrahmane, O. Hartmann, N. Herrmann, K. Hildenbrand, T. Kang, Y. Kim, M. Kiš et al., Nucl. Phys. A 848, 366 (2010).

[25] M. B. Tsang (private communication).

[26] G. Ferini, M. Colonna, T. Gaitanos, and M. Di Toro, Nucl. Phys. A 762, 147 (2005).

[27] J. Xu, C. M. Ko, and Y. Oh, Phys. Rev. C 81, 024910 (2010).

[28] J. Xu, L.-W. Chen, C. M. Ko, B.-A. Li, and Y.-G. Ma, Phys. Rev. C 87, 067601 (2013).

[29] T. Song and C. M. Ko, Phys. Rev. C 91, 014901 (2015).

[30] Z. Zhang and C. M. Ko, Phys. Rev.C 95, 064604 (2017).

[31] Z. Zhang and C. M. Ko, Phys. Rev.C 97, 014610 (2018).

[32] M. Cozma, Phys. Lett. B 753, 166 (2016).

[33] M. Cozma, Phys. Rev. C 95, 014601 (2017).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る