リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Multicomponent Synthesis of Imidazo[1,2-a]pyridines: Aerobic Oxidative Formation of C–N and C–S Bonds by Flavin–Iodine-Coupled Organocatalysis」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Multicomponent Synthesis of Imidazo[1,2-a]pyridines: Aerobic Oxidative Formation of C–N and C–S Bonds by Flavin–Iodine-Coupled Organocatalysis

Okai, Hayaki Tanimoto, Kazumasa Ohkado, Ryoma 飯田 拡基 島根大学 DOI:10.1021/acs.orglett.0c02929

2020.10.16

概要

Herein, we report an aerobic oxidative C–N bond-forming process that enables the facile synthesis of imidazo[1,2-a]pyridines and takes advantage of a coupled organocatalytic system that uses flavin and iodine. Furthermore, the dual catalytic system can be applied to the one-pot, three-step synthesis of 3-thioimidazo[1,2-a]pyridines from aminopyridines, ketones, and thiols.

この論文で使われている画像

参考文献

(1) (a) Hill, C. L. Nature. 1999, 401, 436. (b) Simándi, L. I. Advances

in Catalytic Activation of Dioxygen by Metal Complexes; Kluwer Academic Publishers.; Dordrecht, The Netherlands, 2002. (c) Green Oxidation in Organic Synthesis; John Wiley & Sons, 2019.

(2) (a) Toure, B. B.; Hall, D. G. Chem. Rev. 2009, 109, 4439. (b)

Sheldon, R. A. Chem. Soc. Rev. 2012, 41, 1437. (c) Volla, C. M. R.;

Atodiresei, L.; Rueping, M. Chem. Rev. 2014, 114, 2390.

(3) (a) Lee, J. M.; Na, Y.; Han, H.; Chang, S. Chem. Soc. Rev. 2004,

33, 302. (b) Piera, J.; Bäckvall, J.-E. Angew. Chem., Int. Ed. 2008, 47,

3506. (c) Wiester, M. J.; Ulmann, P. A.; Mirkin, C. A. Angew. Chem.,

Int. Ed. 2011, 50, 114. (d) Wang, M. H.; Scheidt, K. A. Angew. Chem.,

Int. Ed. 2016, 55, 14912.

(4) (a) Murahashi, S.-I.; Oda, T.; Masui, Y. J. Am. Chem. Soc. 1989,

111, 5002. (b) Murahashi, S. I. Angew. Chem., Int. Ed. 1995, 34, 2443.

(5) (a) Imada, Y.; Iida, H.; Ono, S.; Murahashi, S. I. J. Am. Chem.

Soc. 2003, 125, 2868. (b) Imada, Y.; Iida, H.; Murahashi, S.-I.; Naota,

T. Angew. Chem., Int. Ed. 2005, 44, 1704. (c) Chen, S.; Foss, Jr, F. W.

Org. Lett. 2012, 14, 5150. (d) Imada, Y.; Kitagawa, T.; Wang, H.-K.;

Komiya, N.; Naota, T. Tetrahedron Lett. 2013, 54, 621. (e) Kotoučová,

H.; Strnadová, I.; Kovandová, M.; Chudoba, J.; Dvořáková, H.;

Cibulka, R. Org. Biomol. Chem. 2014, 12, 2137. (f) Murahashi, S.-I.;

Zhang, D.; Iida, H.; Miyawaki, T.; Uenaka, M.; Murano, K.; Meguro,

K. Chem. Commun. 2014, 50, 10295. (g) Iida, H.; Imada, Y.; Murahashi, S.-I. Org. Biomol. Chem. 2015, 13, 7599. (h) Cibulka, R. Eur.

J. Org. Chem. 2015, 2015, 915.

(6) Recently, flavins have also been attracted increasing attention as

a photocatalyst using molecular oxygen. (a) Fukuzumi, S.; Kuroda, S.;

Tanaka, T. J. Am. Chem. Soc. 1985, 107, 3020. (b) Cibulka, R.; Vasold,

R.; König, B. Chem. - Eur. J. 2004, 10, 6223. (c) Muhldorf, B.; Wolf,

R. Angew. Chem., Int. Ed. 2016, 55, 427. (d) Metternich, J. B.; Gilmour,

R. J. Am. Chem. Soc. 2016, 138, 1040. (e) Ramirez, N. P.; König, B.;

Gonzalez-Gomez, J. C. Org. Lett. 2019, 21, 1368. (f) Zelenka, J.;

Cibulka, R.; Roithova, J. Angew. Chem., Int. Ed. 2019, 58, 15412. (g)

König, B.; Kümmel, S.; Svobodová, E.; Cibulka, R. Physical Sciences

Reviews. 2018, 3.

(7) (a) Müller, F. Chemistry and Biochemistry of Flavoenzymes;

CRC Press: Boston, 1991. (b) Hille, R.; Miller, S.; Palfey, B. Handbook

of Flavoproteins; De Gruyter: 2013.

(8) (a) Yano, Y.; Hoshino, Y.; Tagaki, W. Chem. Lett. 1980, 9, 749.

(b) Shinkai, S.; Yamashita, T.; Kusano, Y.; Manabe, O. The J. Org.

Chem. 1980, 45, 4947. (c) Bergstad, K.; Jonsson, S. Y.; Bäckvall, J.-E.

J. Am. Chem. Soc. 1999, 121, 10424. (d) Iwahana, S.; Iida, H.; Yashima,

E. Chem. Eur. J. 2011, 17, 8009. (e) Hering, T.; Muhldorf, B.; Wolf,

R.; König, B. Angew. Chem., Int. Ed. 2016, 55, 5342. (f) Marz, M.;

Chudoba, J.; Kohout, M.; Cibulka, R. Org. Biomol. Chem. 2017, 15,

1970. (g) Sakai, T.; Watanabe, M.; Ohkado, R.; Arakawa, Y.; Imada,

Y.; Iida, H. ChemSusChem. 2019, 12, 1640. (h) Zelenka, J.; Svobodova,

E.; Tarabek, J.; Hoskovcova, I.; Boguschova, V.; Bailly, S.; Sikorski,

M.; Roithova, J.; Cibulka, R. Org. Lett. 2019, 21, 114. (i) Zhang, W.;

Carpenter, K. L.; Lin, S. Angew. Chem., Int. Ed. 2020, 59, 409.

(9) Recently, the flavin-catalyzed system was also applied to C-S

bond formations: Bouchet, L. M.; Heredia, A. A.; Argüello, J. E.;

Schmidt, L. C. Org. Lett. 2020, 22, 610. Also see ref 9h and i.

(10) For reviews, see: (a) Enguehard-Gueiffier, C.; Gueiffier, A.

Mini Rev. Med. Chem. 2007, 7, 888. (b) Couty, F.; Evano, G. I. in Comprehensive Heterocyclic Chemistry III; Katritzky, A. R.; Ramsden, C.

A.; Scriven, E. F. V.; Taylor, R. J. K., Eds.; Elsevier: Amsterdam, 2008;

Vol. 11, p 409. (c) Koubachi, J.; El Kazzouli, S.; Bousmina, M.; Guillaumet, G. Eur. J. Org. Chem. 2014, 2014, 5119. (d) Bagdi, A. K.;

Santra, S.; Monir, K.; Hajra, A. Chem. Commun. 2015, 51, 1555. (e)

Ravi, C.; Adimurthy, S. Chem. Rec. 2017, 17, 1019.

(11) Langer, S. Z.; Arbilla, S.; Benavides, J.; Scatton, B. Adv. Biochem. Psychopharmacol. 1990, 46, 61.

(12) Boerner, R. J.; Moller, H. J. Psychopharmakotherapie. 1997, 4,

145.

(13) Almirante, L.; Polo, L.; Mugnaini, A.; Provinciali, E.; Rugarli,

P.; Biancotti, A.; Gamba, A.; Murmann, W. J. Med. Chem. 1965, 8,

305.

(14) Mizushige, K.; Ueda, T.; Yukiiri, K.; Suzuki, H. Cardiovascular Drug Reviews. 2002, 20, 163.

(15) Scott, L. J. Drugs. 2014, 74, 2153.

(16) (a) Hamdouchi, C.; de Blas, J.; del Prado, M.; Gruber, J.; Heinz,

B. A.; Vance, L. J. Med. Chem. 1999, 42, 50. (b) Gudmundsson, K.;

Boggs, S. D. PCT Int. Appl., WO 2006026703, 2006. (c) Perin, N.;

Nhili, R.; Ester, K.; Laine, W.; Karminski-Zamola, G.; Kralj, M.; David-Cordonnier, M.-H.; Hranjec, M. Eur. J. Med. Chem. 2014, 80, 218.

(17) (a) Douhal, A.; Amatguerri, F.; Acuna, A. U. J. Phys. Chem.

1995, 99, 76. (b) Douhal, A.; AmatGuerri, F.; Acuna, A. U. Angew.

Chem., Int. Ed. 1997, 36, 1514. (c) Mutai, T.; Tomoda, H.; Ohkawa,

T.; Yabe, Y.; Araki, K. Angew. Chem., Int. Ed. 2008, 47, 9522. (d)

Shono, H.; Ohkawa, T.; Tomoda, H.; Mutai, T.; Araki, K. ACS Appl.

Mater. Interfaces. 2011, 3, 654. (e) Stasyuk, A. J.; Banasiewicz, M.;

Cyranski, M. K.; Gryko, D. T. J. Org. Chem. 2012, 77, 5552. (f) Wan,

J.; Zheng, C.-J.; Fung, M.-K.; Liu, X.-K.; Lee, C.-S.; Zhang, X.-H. J.

Mater. Chem. 2012, 22, 4502. (g) Furukawa, S.; Shono, H.; Mutai, T.;

Araki, K. ACS Appl.Mater. Interfaces. 2014, 6, 16065.

(18) For selected examples, see: (a) Wang, H.; Wang, Y.; Peng, C.;

Zhang, J.; Zhu, Q. J. Am. Chem. Soc. 2010, 132, 13217. (b) Ma, L. J.;

Wang, X. P.; Yu, W.; Han, B. Chem. Commun. 2011, 47, 11333. (c)

He, C.; Hao, J.; Xu, H.; Mo, Y.; Liu, H.; Han, J.; Lei, A. Chem. Commun. 2012, 48, 11073. (d) Wen, L. R.; Li, Z. R.; Li, M.; Cao, H. Green

Chem. 2012, 14, 707. (e) Santra, S.; Bagdi, A. K.; Majee, A.; Hajra, A.

Adv.Synth. Catal. 2013, 355, 1065. (f) Mohan, D. C.; Rao, S. N.; Adimurthy, S. J. Org. Chem. 2013, 78, 1266. (g) Huang, H. W.; Ji, X. C.;

Tang, X. D.; Zhang, M.; Li, X. W.; Jiang, H. F. Org. Lett. 2013, 15,

6254.

(19) For recent reviews, see: Pericherla, K.; Kaswan, P.; Pandey, K.;

Kumar, A. Synthesis. 2015, 47, 887 and refs 10d, e.

(20) (a) Zhang, Y. F.; Chen, Z. K.; Wu, W. L.; Zhang, Y. H.; Su, W.

P. J. Org. Chem. 2013, 78, 12494. (b) Cai, Z.-J.; Wang, S.-Y.; Ji, S.-J.

Adv. Synth. Catal. 2013, 355, 2686. (c) Mohan, D. C.; Donthiri, R. R.;

Rao, S. N.; Adimurthy, S. Adv. Synth. Catal. 2013, 355, 2217. (d) Bagdi,

A. K.; Rahman, M.; Santra, S.; Majee, A.; Hajra, A. Adv. Synth. Catal.

2013, 355, 1741.

(21) Iodine catalysis also has attracted increasing attention as a versatile tool providing efficient organic transformations. For recent reviews of iodine-catalyzed systems, see: (a) Parvatkar, P. T.;

Parameswaran, P. S.; Tilve, S. G. Chem. – Eur. J. 2012, 18, 5460. (b)

Liu, D.; Lei, A. Chem. – Asian J. 2015, 10, 806. (c) Parvatkar, P. T.;

Manetsch, R.; Banik, B. K. Chem. – Asian J. 2019, 14, 6. (d) Flores.;

Cots, E.; Berges, J.; Muniz, K. Adv. Synth. Catal. 2019, 361, 2.

(22) Ishikawa, T.; Kimura, M.; Kumoi, T.; Iida, H. ACS Catal. 2017,

7, 4986.

(23) (a) Ohkado, R.; Ishikawa, T.; Iida, H. Green Chem. 2018, 20,

984. (b) Iida, H.; Demizu, R.; Ohkado, R. J. Org. Chem. 2018, 83,

12291. (c) Tanimoto, K.; Ohkado, R.; Iida, H. J. Org. Chem. 2019, 84,

14980.

(24) Sakai, T.; Kumoi, T.; Ishikawa, T.; Nitta, T.; Iida, H. Org. Biomol. Chem. 2018, 16, 3999.

(25) For recent examples, see: (a) Ravi, C.; Mohan, D. C.; Adimurthy, S. Org. Lett. 2014, 16, 2978. (b) Hiebel, M.-A.; Berteina-Raboin, S. Green Chem. 2015, 17, 937. (c) Rafique, J.; Saba, S.; Rosario,

A. R.; Braga, A. L. Chem. - Eur. J. 2016, 22, 11854. (d) Li, J. X.; Li,

C. S.; Yang, S. R.; An, Y. N.; Wu, W. Q.; Jiang, H. F. J. Org. Chem.

2016, 81, 7771. (e) Sun, P.; Yang, D.; Wei, W.; Jiang, M.; Wang, Z.;

Zhang, L.; Zhang, H.; Zhang, Z.; Wang, Y.; Wang, H. Green Chem.

2017, 19, 4785. (f) Zhang, J.-R.; Zhan, L.-Z.; Wei, L.; Ning, Y.-Y.;

Zhong, X.-L.; Lai, J.-X.; Xu, L.; Tang, R.-Y. Adv. Synth. Catal. 2017,

360, 533. (g) Rahaman, R.; Das, S.; Barman, P. Green Chem. 2018, 20,

141.

...

参考文献をもっと見る