リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「1,2‐Carbopentafluorophenylation of Alkynes: The Metallomimetic Pull‐Push Reactivity of Tris(pentafluorophenyl)borane」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

1,2‐Carbopentafluorophenylation of Alkynes: The Metallomimetic Pull‐Push Reactivity of Tris(pentafluorophenyl)borane

Shibuya, Masatoshi Matsuda, Miki Yamamoto, Yoshihiko 名古屋大学

2021.06.16

概要

We report the novel single-step 1,2-dicarbofunctionalization of an arylacetylene with an allylsilane and tris(pentafluorophenyl)borane [B(C6F5)3], involving C–C bond formation with C–H bond scission at the β-position to the silicon atom of an allylsilane and B→C migration of a C6F5 group. The 1,2- carbopentafluorophenylation reaction occurs smoothly without the requirement for a catalyst or heating. Mechanistic studies suggest that the metallomimetic “pull-push” reactivity of B(C6F5)3 imparts consecutive electrophilic and nucleophilic characteristics to the benzylic carbon of the arylacetylene. Subsequent photochemical 6π- electrocyclization affords tetrafluoronaphthalenes, which are important in the pharmaceutical and materials sciences. Owing to the unique reactivity of B(C6F5)3, the 1,2-carbopentafluorophenylation using 2-substituted furan proceeded with ring opening, and the reaction using silyl enolates formed C–C bond with C–O bond scission at the silyloxy-substituted carbon.

この論文で使われている画像

参考文献

[1] a) P. S. G. Nunes, H. D. A. Vidal, A. G. Correa, Org. Biomol. Chem. 2020, 18, 7751-7773; b) I. A. Ibarra, A. Islas-Jacome, E. Gonzalez-Zamora, Org. Biomol. Chem. 2018, 16, 1402-1418; c) S. Ogoshi, Bull. Chem. Soc. Jpn. 2017, 90, 1401-1406.

[2] a) K. Murakami, H. Yorimitsu, Beilstein J. Org. Chem. 2013, 9, 278-302;b) K. Motokura, T. Baba, Green Chem. 2012, 14, 565-579; c) E. Negishi, Bull. Chem. Soc. Jpn. 2007, 80, 233-257; d) A. G. Fallis, P. Forgione, Tetrahedron 2001, 57, 5899-5913; e) K. J. Macneil, D. J. Burton, J. Org. Chem. 1993, 58, 4411-4417; f) J. F. Normant, A. Alexakis, Synthesis 1981, 841-870.

[3] A. B. Flynn, W. W. Ogilvie, Chem. Rev. 2007, 107, 4698-4745.

[4] a) Y. H. Lee, E. H. Denton, B. Morandi, Nat. Chem. 2021, 13, 123-130;b) Z. D. Li, A. Garcia-Dominguez, C. Nevado, Angew. Chem. 2016, 128, 7052-7055; Angew. Chem. Int. Ed. 2016, 55, 6938-6941; c) F. Xue, J.Zhao, T. S. A. Hor, T. Hayashi, J. Am. Chem. Soc. 2015, 137, 3189- 3192; d) C. X. Zhou, D. E. Emrich, R. C. Larock, Org. Lett. 2003, 5, 1579- 1582.

[5] a) T. Nishikawa, H. Yorimitsu, K. Oshima, Synlett 2004, 1573-1574; b) K. Okada, K. Oshima, K. Utimoto, J. Am. Chem. Soc. 1996, 118, 6076- 6077; c) T. Takahashi, M. Kotora, K. Kasai, N. Suzuki, Tetrahedron Lett. 1994, 35, 5685-5688.

[6] a) W. F. Li, S. Yu, J. C. Li, Y. Zhao, Angew. Chem. 2020, 132, 14510- 14514; Angew. Chem. Int. Ed. 2020, 59, 14404-14408; b) V. T. Tran, Z.Q. Li, T. J. Gallagher, J. Derosa, P. Liu, K. M. Engle, Angew. Chem. 2020,132, 7095-7100; Angew. Chem. Int. Ed. 2020, 59, 7029-7034; c) Y.Hirata, T. Yukawa, N. Kashihara, Y. Nakao, T. Hiyama, J. Am. Chem.Soc. 2009, 131, 10964-10973; d) T. Hirashita, K. Akutagawa, T. Kamei,1003-1022.a) K. Matsuzaki, K. Okuyama, E. Tokunaga, M. Shiro, N. Shibata,ChemistryOpen 2014, 3, 233-237; b) M. H. Yoon, A. Facchetti, C. E.Stern, T. J. Marks, J. Am. Chem. Soc. 2006, 128, 5792-5801; c) C.-Y.Kim, J. S. Chang, J. B. Doyon, T. T. Baird, C. A. Fierke, A. Jain, D. W. Christianson, J. Am. Chem. Soc. 2000, 122, 12125-12134.S. Araki, Chem. Commun. 2006, 2598-2600.

[7] a) A. G. Massey, A. J. Park, J. Organomet. Chem. 1964, 2, 245-250; b)A. G. Massey, F. G. A. Stone, A. J. Park, Proc. Chem. Soc. 1963, 212.

[8] a) D. W. Stephan, G. Erker, Angew. Chem. 2015, 127, 6498-6541;Angew. Chem. Int. Ed. 2015, 54, 6400-6441; b) G. Erker, Dalton Trans.2005, 1883-1890; c) D. W. Stephan, J. Am. Chem. Soc. 2015, 137,10018-10032.

[9] M. A. Legare, C. Pranckevicius, H. Braunschweig, Chem. Rev. 2019, 119, 8231-8261.

[10] a) R. Dobrovetsky, D. W. Stephan, J. Am. Chem. Soc. 2013, 135, 4974- 4977; b) A. E. Ashley, A. L. Thompson, D. O'Hare, Angew. Chem. 2009,121, 10023-10027; Angew. Chem. Int. Ed. 2009, 48, 9839-9843; c) E.Otten, R. C. Neu, D. W. Stephan, J. Am. Chem. Soc. 2009, 131, 9918-9919; d) G. C. Welch, D. W. Stephan, J. Am. Chem. Soc. 2007, 129, 1880-1881.

[11] a) J. Guo, O. Cheong, K. L. Bamford, J. Zhou, D. W. Stephan, Chem.Commun. 2020, 56, 1855-1858; b) F. Ling, L. Xiao, L. Fang, C. Feng, Z. Xie, Y. P. Lv, W. H. Zhong, Org. Biomol. Chem. 2018, 16, 9274-9278; c)M. A. Dureen, C. C. Brown, D. W. Stephan, Organometallics 2010, 29, 6422-6432; d) M. A. Dureen, D. W. Stephan, J. Am. Chem. Soc. 2009,131, 8396-8397.

[12] a) M. Cao, A. Yesilcimen, M. Wasa, J. Am. Chem. Soc. 2019, 141, 4199- 4203; b) T. Mahdi, D. W. Stephan, Chem. – Eur. J. 2015, 21, 11134-11142; c) T. Mahdi, D. W. Stephan, Angew. Chem. 2013, 125, 12644-12647; Angew. Chem. Int. Ed. 2013, 52, 12418-12421.

[13] a) M. M. Hansmann, R. L. Melen, M. Rudolph, F. Rominger, H. Wadepohl,D. W. Stephan, A. S. Hashmi, J. Am. Chem. Soc. 2015, 137, 15469-15477; b) M. M. Hansmann, R. L. Melen, F. Rominger, A. S. K. Hashmi,D. W. Stephan, J. Am. Chem. Soc. 2014, 136, 777-782; c) R. L. Melen,M. M. Hansmann, A. J. Lough, A. S. K. Hashmi, D. W. Stephan, Chem.– Eur. J. 2013, 19, 11928-11938.

[14] a) G. Kehr, G. Erker, Chem. Commun. 2012, 48, 1839-1850; b) C. Chen,T. Voss, R. Frohlich, G. Kehr, G. Erker, Org. Lett. 2011, 13, 62-65; c) C.Chen, G. Kehr, R. Frohlich, G. Erker, J. Am. Chem. Soc. 2010, 132, 13594-13595; d) C. F. Jiang, O. Blacque, H. Berke, Organometallics 2010, 29, 125-133; e) C. Chen, F. Eweiner, B. Wibbeling, R. Frohlich, S.Senda, Y. Ohki, K. Tatsumi, S. Grimme, G. Kehr, G. Erker, Chem. AsianJ. 2010, 5, 2199-2208.

[15] a) M. Shibuya, S. Kawano, S. Fujita, Y. Yamamoto, Asian J. Org. Chem.2019, 8, 1075-1079; b) M. Shibuya, M. Okamoto, S. Fujita, M. Abe, Y. Yamamoto, ACS Catal. 2018, 8, 4189-4193.

[16] a) B. Kempf, H. Mayr, Chem. – Eur. J. 2005, 11, 917-927; b) H. Mayr, B.Kempf, A. R. Ofial, Acc. Chem. Res. 2003, 36, 66-77.

[17] a) A. Fürstner, P. W. Davies, Angew. Chem. 2007, 119, 3478-3519;Angew. Chem. Int. Ed. 2007, 46, 3410-3449; b) D. J. Gorin, N. R. Davis,F. D. Toste, J. Am. Chem. Soc. 2005, 127, 11260-11261; c) M. R. Luzung,J. P. Markham, F. D. Toste, J. Am. Chem. Soc. 2004, 126, 10858-10859.

[18] a) A. Bismuto, M. J. Cowley, S. P. Thomas, Adv. Synth. Catal. 2021,DOI:10.1002/adsc.202001323; b) A. Bismuto, G. S. Nichol, F. Duarte, M.I. Cowley, S. P. Thomas, Angew. Chem. 2020, 132, 12831-12835;Angew. Chem. Int. Ed. 2020, 59, 12731-12735.

[19] C. Y. Legault, Université de Sherbrooke, 2009 (http://www.cylview.org).

[20] a) R. A. A. Yañez, G. Kehr, C. G. Daniliuc, B. Schirmer, G. Erker, Dalton Trans. 2014, 43, 10794-10800; b) C. Chen, M. Harhausen, A. Fukazawa,S. Yamaguchi, R. Fröhlich, C. G. Daniliuc, J. L. Petersen, G. Kehr, G.Erker, Chem. Asian J. 2014, 9, 1671-1681; c) B. H. Xu, C. M. Momming,R. Frohlich, G. Kehr, G. Erker, Chem. – Eur. J. 2012, 18, 1826-1830; d)X. Zhao, D. W. Stephan, J. Am. Chem. Soc. 2011, 133, 12448-12450.

[21] a) J. H. Lee, Tetrahedron 2020, 76, 131351; b) A. Hosomi, K. Miura, Bull.Chem. Soc. Jpn. 2004, 77, 835-851.

[22] E. A. Meyer, R. K. Castellano, F. Diederich, Angew. Chem. 2003, 115, 1244-1287; Angew. Chem. Int. Ed. 2003, 42, 1210-1250.

[23] F. Babudri, G. M. Farinola, F. Naso, R. Ragni, Chem. Commun. 2007,1003-1022.

[24] a) K. Matsuzaki, K. Okuyama, E. Tokunaga, M. Shiro, N. Shibata,ChemistryOpen 2014, 3, 233-237; b) M. H. Yoon, A. Facchetti, C. E.Stern, T. J. Marks, J. Am. Chem. Soc. 2006, 128, 5792-5801; c) C.-Y.Kim, J. S. Chang, J. B. Doyon, T. T. Baird, C. A. Fierke, A. Jain, D. W. Christianson, J. Am. Chem. Soc. 2000, 122, 12125-12134.

[25] a) Z. Li, R. J. Twieg, Chem. – Eur. J. 2015, 21, 15534-15539; b) F. B.Mallory, C. W. Mallory, Org. React. 1984, 30, 1-456.

[26] M. Leiendecker, C. C. Hsiao, L. Guo, N. Alandini, M. Rueping, Angew.Chem. 2014, 126, 13126-13129; Angew. Chem. Int. Ed. 2014, 53,12912-12915.

[27] a) J. Schiessl, M. Rudolph, A. S. K. Hashmi, Adv. Synth. Catal. 2017,359, 639-653; b) C. Luo, H. Yang, R. Mao, C. Lu, G. Cheng, New J. Chem. 2015, 39, 3417-3423.

[28] a) A. Dasgupta, R. Babaahmadi, B. Slater, B. F. Yates, A. Ariafard, R. L.Melen, Chem 2020, 6, 2364-2381; b) C. K. Hazra, N. Gandhamsetty, S. Park, S. Chang, Nat. Commun. 2016, 7, 13757-13761.

[29] a) D. Lebœuf, M. Gaydou, Y. Wang, A. M. Echavarren, Org. Chem. Front.2014, 1, 759-764; b) B. Martin-Matute, D. J. Cárdenas, A. M. Echavarren,Angew. Chem. 2001, 113, 4890-4893; Angew. Chem. Int. Ed. 2001, 40,4754-4757.

参考文献をもっと見る