リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Reaction mechanism of N-cyclopropylglycine oxidation by monomeric sarcosine oxidase」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Reaction mechanism of N-cyclopropylglycine oxidation by monomeric sarcosine oxidase

庄司, 光男 Yukihiro, Abe Mauro, Boero Yasuteru, Shigeta Yoshiaki, Nishiya 筑波大学

2022.09.27

概要

Monomeric sarcosine oxidase (MSOX) is a fundamental - yet one of the simplest - member of a family of flavoenzymes able to catalyze the oxidation of sarcosine (N-methylglycine) and other secondary amines. MSOX is one of the best characterized members of the amine oxidoreductases (AOs), however, its reaction mechanism is still controversial. A single electron trans- fer (SET) process was suggested on the basis of studies with N-cyclopropylglycine (CPG), although a hydride transfer mech- anism would be more consistent in general for AOs. To shed some light on the detailed reaction mechanisms of CPG in MSOX, we performed hybrid quantum mechanical/molecular mechanical (QM/MM) simulations. We found that the polar mechanism is energetically the most favorable. The free energy profile indicates that the first rate-limiting step is the CPG binding to the flavin ring which simultaneously proceeds with the ring-opening of the CPG cyclopropyl group. This reaction step of the CPG adduct formation corresponds to the nucleophilic attack of the cyclopropyl group (C3 atom) to the flavin ring (C4a atom), whereas the expected radical species formation in the SET mechanism was not observed. The following inactivated species, which accumulates during the CPG oxidation in MSOX, can be ascribed to an imine state, and not an enamine state, on the basis of the computed UV/Vis spectra. The conformation of CPG was found to be crucial for reactions following the CPG adduct formation.

この論文で使われている画像

関連論文

参考文献

1. E. Romero, J. R. G. Castellanos, G. Gadda, M. W. Fraaije, A. Mattevi, Chem. Rev., 2018, 118, 1742-1769.

2. Y. Nishiya, S. Nakano, K. Kawamura, Y. Abe, J. Anal. Bio-Sci.,2012, 35, 426-430.

3. H. Suzuki, Amino Acids, 1994, 7, 27-43.

4. R. B. Silverman, Acc. Chem. Res., 1995, 28, 335-342.

5. Y. Abe, M. Shoji, Y. Nishiya, H. Aiba, T. Kishimoto, K. Kitaura,Phys. Chem. Chem. Phys., 2017, 19, 9811-9822.

6. J. R. Miller, D. E., Edmondson, Biochemistry, 1999, 38, 13670-13683.

7. E. Abad, R. K. Zenn, J. Kästner, J. Phys. Chem. B, 2013, 117, 14238-14246.

8. R. B. Silverman, Y. Zelechonok. J. Org. Chem., 1992, 57, 6373-6374.

9. P. F. Fitzpatrick, Arch. Biochem Biophys., 2010, 493, 13-25.

10. A. Mattevi, M. A. Vanoni, F. Todone, M. Rizzi, A. Teplyakov, A. Coda, M. Bolognesi, B. Curti, Proc. Natl. Acad. Sci. USA, 1996,93, 7496-7501.

11. K. A. Kurtz, M. A. Rishavy, W. W. Cleland, P. F. Fitzptrick, J. Am.Chem. Soc., 2000, 122, 12986-12897.

12. S. S. Erdem, Ö. Karahan, I. Yildiz, K. Yelekci, Org. Biomol. Chem.,2006, 4, 646-658.

13. R. Harris, R. Meskys, M. J. Sutcliffe, N. S. Scrutton,Biochemistry, 2000, 39(6), 1189-1198.

14. G. Zhao, M. S. Jorns, Biochemistry, 2006, 45, 5985-5992.

15. Z. Chen, G. Zhao, S. Martinovic, M. S. Jorns, F. S. Mathews,Biochemistry, 2005, 44, 15444-15450.

16. G. Zhao, J. Qu, F. A. Davis, M. S. Jorns, Biochemistry, 2000, 39, 14341-14347.

17. J. M. Kim, S. E. Hoegy, P. S. Mariano, J. Am. Chem. Soc., 1995,117, 100-105.

18. E. C. Ralph, J. S. Hirschi, M. A. Anderson, W. W. Cleland, D. A. Singleton, P. F. Fitzpatrick, Biochemistry, 2007, 46, 76557664.

19. C. J. Suckling, Angew. Chem. Int. Ed. Engl., 1988, 27, 537-552.

20. J.-M. Kim, S. E. Hoegy, P. S. Mariano, J. Am. Chem. Soc., 1993,115(23), 10591-10595.

21. M. A. Wagner, P. Trickey, Z. Chen, F. S. Mathews, M. S. Jorns,Biochemistry, 2000, 39(30), 8813-8824.

22. J. M. Word, S. C. Lovell, J. S. Richardson, D. C. Richardson, J. Biol. Biol., 1999, 285, 1735-1747.

23. G. Zhao, M. S. Jorns, Biochemistry, 2005, 44, 16866-16874.

24. D.A. Case, T.A. Darden, T. E. Cheatham III, C. L. Simmerling, J. Wang, R. E. Duke, R. Luo, R. C. Walker, W. Zhang, K. M. Merz,B. Roberts, B. Wang, S. Hayik, A. Roitberg, G. Seabra, I. Kolossvary, K. F. Wong, F. Paesani, J. Vanicek, X. Wu, S. R. Brozell, T. Steinbrecher, H. Gohlke, Q. Cai, X. Ye, J. Wang, M.-J. Hsieh, G. Cui, D. R. Roe, D. H. Mathews, M. G. Seetin, C. Sagui,V. Babin, T. Luchko, S. Gusarov, A. Kovalenko, P. A. Kollman, AMBER 11, University of California, San Francisco, 2010.

25. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J.J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M.C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari,J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L.Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Gaussian, Inc., Wallingford CT, 2004.

26. M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma,H. J. J van. Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus,W.A. de Jong, Comput. Phys. Commun., 2010, 181, 1477-1489.

27 A. H.- Abdalah, G. Zhao, M. S. Jorns, Biochemistry, 2006, 45,9454-9462.

28. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys., 2010,132, 154104-19.

29. M. Wu, L. A. Eriksson, J. Phys. Chem. A, 2010, 114, 10234-10242.

30. M. P. Kabir, Y. O- Gonzalez, S. Gozem, Phys. Chem. Chem. Phys.,2019, 21, 16526-16537.

31. K. Lincke, J. Langeland, A. O. Madsen, H. V. Kiefer, L. Skov, E. Gruber, K. V. Mikkelsen, L. H. Andersen, M. B. Nielsen, Phys. Chem. Chem. Phys., 2018, 20, 28678-28684.

32. W. Humphrey, A. Dalke,; K. Schulten, J. Mole. Graphics, 1996,14, 33-38.

33. M. Shoji, M. Kayanuma, Y. Shigeta, Bull. Chem. Soc. Jap., 2018,191(10), 1465-1473.

34. G. Zhao, M. S. Jorns, Biochemistry, 2002, 41, 9747-9750.

35. G. Zhao, M. S. Jorns, Biochemistry, 2006, 45, 5985-5992.

参考文献をもっと見る