リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Extended-spectrum antibiotics for community-acquired pneumonia with a low risk for drug-resistant pathogens」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Extended-spectrum antibiotics for community-acquired pneumonia with a low risk for drug-resistant pathogens

小林, 弘典 名古屋大学

2023.07.05

概要

主論文の要旨

Extended-spectrum antibiotics for
community-acquired pneumonia with
a low risk for drug-resistant pathogens
薬剤耐性菌低リスクの市中肺炎に対する広域抗菌薬

名古屋大学大学院医学系研究科
病態内科学講座

総合医学専攻

呼吸器内科学分野

(指導:石井 誠
小林 弘典

教授)

【緒言】
肺炎は世界の主要な死因の一つである。不適切な抗菌薬投与が予後不良と関連する
ことが報告されているが、市中肺炎に対する初期抗菌薬として、起炎菌に感受性のな
い抗菌薬投与となってしまうことを避けるために不必要な抗緑膿菌薬や抗メチシリン
耐性黄色ブドウ球菌(MRSA: methicillin-resistant Staphylococcus aureus)薬などの広域抗
菌薬がしばしば投与される。しかし近年では、市中肺炎(医療ケア関連肺炎を含む)に
対する広域抗菌薬投与が予後不良と関連するという報告も散見される。肺炎の適切な
初期抗菌薬を選択するためには薬剤耐性菌のリスク評価は必須である。2019 年に改定
さ れ た 胸 部 疾 患 学 会 、 感 染 症 学 会 (ATS/IDSA: American Thoracic Society/ Infectious
Diseases Society of America)の市中肺炎ガイドラインでは、初期抗菌薬を選択するため
に、まず肺炎の重症度を評価し、次に緑膿菌や MRSA をはじめとする薬剤耐性菌の検
出歴を確認し、最後に重症肺炎の場合は薬剤耐性菌のリスクを評価することを推奨し
ている。
近年、薬剤耐性菌の予測モデルが複数報告されている。それらのモデルは耐性菌低
リスク患者の予測精度は良いが、耐性菌高リスク患者の予測精度は悪いことが判明し
ている。ガイドラインは上述の治療戦略を推奨しているが、我々の知る限りでは、こ
の薬剤耐性菌のリスクを考慮した治療戦略における不必要な広域抗菌薬投与が、予後
に与える影響はわかっておらず、更なる評価が必要である。
本研究は 2019 ATS/IDSA 市中肺炎ガイドラインの治療戦略に沿った際の、薬剤耐性
菌低リスクの市中肺炎入院患者に対する不必要な広域抗菌薬投与が、予後に与える影
響を明らかにすることを目的として実施された。
【対象及び方法】
本研究では、日本の 4 施設で 2013 年 4 月 1 日から 2014 年 3 月 31 日までに行われ
た、市中肺炎に対する前向き観察研究の post hoc 解析を行った。入院を要した 20 歳以
上の市中肺炎(医療ケア関連肺炎を含む)患者の中で、2019 ATS/IDSA 市中肺炎ガイド
ラインに沿って耐性菌低リスク患者を抽出した。薬剤耐性菌の検出歴を有する患者及
び、重症肺炎患者の中で薬剤耐性菌高リスク患者は除外した。市中肺炎の重症度分類
には 2007 IDSA/ATS criteria を用いた。薬剤耐性菌の予測モデルは先行研究で我々が作
成し、評価したルールを用いた。抗菌薬治療は、標準治療群と広域抗菌薬群の 2 群に
分類した。非重症肺炎であれば緑膿菌活性のない β ラクタム+マクロライド(または
ミノサイクリン)、またはフルオロキノロン単剤を、重症肺炎であれば β ラクタム+マ
クロライド、または β ラクタム+フルオロキノロンを標準治療と定義した。広域抗菌
薬は、重症度にかかわらず抗緑膿菌薬または抗 MRSA 薬の使用と定義した。Primary
endpoint は 30 日死亡割合とし、subgroup 解析として肺炎重症度別の、広域抗菌薬が予
後に与える影響も評価した。解析手法は既報で、感受性のある初期抗菌薬治療群にお
ける死亡リスク因子と示されている、5 つの因子(歩行不能状態、呼吸数、アルブミン
値、pH 値、尿素窒素値)で調整した多変量解析を行った。結果の頑健性を評価するた

-1-

め、Propensity score 解析を含む 3 つの感度分析を行った。
【結果】
750 例の登録患者のうち、721 例が適格と判定された。その中で 627 例が薬剤耐性菌
低リスク患 者であり、 257 例で標準治療を受 け、159 例で広域抗菌 薬投与を受 けた
(Figure 1)。広域抗菌薬群では標準治療群と比較し、慢性呼吸器疾患、中枢神経疾患既
往、歩行不能状態、vital signs 不良、低アルブミン血症や BUN 高値、動脈血ガス所見
異常、重症肺炎の割合が高かった(Table 1)。初期抗菌薬は、標準治療群では重症度に
よらず非緑膿菌活性の β-lactam とマクロライド併用療法が最も多かった。広域抗菌薬
群では、非重症肺炎患者にはピペラシリン/タゾバクタムが最も多く、重症患者ではカ
ルバペネム系抗菌薬とマクロライドの併用療法が最も多かった。広域抗菌薬群では βlactam とマクロライド併用療法は 60%以上で行われた(Table 2)。
肺炎患者全体、非重症肺炎、重症肺炎全てで、標準治療群と比較して広域抗菌薬群
で 30 日死亡割合は高かった(Figure 2)。主解析である多変量解析の結果、広域抗菌薬
は 30 日死亡割合を増加させる因子だった(補正オッズ比:2.82, 95% 信頼区間:1.20–
6.65)。Propensity score 解析を含む 3 つの感度分析でも、一貫して広域抗菌薬は 30 日
死亡割合を増加させた(Table 3)。Subgroup 解析の結果、非重症肺炎では広域抗菌薬は
30 日死亡割合を増加させた(補正オッズ比:4.47, 95% 信頼区間:1.30–15.36)一方、重症
肺炎では広域抗菌薬は 30 日死亡割合を増加させる傾向だった(補正オッズ比:1.71,
95% 信頼区間:0.48–6.11)。
【考察】
本研究は薬剤耐性菌低リスクの市中肺炎入院患者に対して、2019 ATS/IDSA 市中肺
炎ガイドラインに沿って初期抗菌薬治療を選択した際の、広域抗菌薬治療が予後に与
える影響を初めて評価した研究である。主解析及び 3 つの感度分析全てで一貫して、
広域抗菌薬が 30 日死亡割合を増加させ、非重症肺炎でより顕著だった。
本研究の結果は、市中肺炎患者に対する広域抗菌薬が予後不良と関連するとされた
既報と一致していた。また本研究から、薬剤耐性菌低リスクの市中肺炎入院患者に対
して、2019 ATS/IDSA 市中肺炎ガイドラインに準じた初期抗菌薬選択を行うことで、
予後を改善させることができる可能性が示唆された。重症肺炎では広域抗菌薬投与が
30 日死亡割合を増加させる統計学的有意差が認められなかったことから、重症肺炎で
は抗菌薬選択以外に適切な呼吸ケアや補助療法などを含む、多面的な治療戦略が重要
だと考えられた。
広域抗菌薬投与が予後不良と関連する理由としては、複数のメカニズムが考えられ
る。広域抗菌薬投与により腸内細菌叢の構成変化が起こり、死亡リスク増加と関連す
る院内肺炎や人工呼吸器関連肺炎の発症増加に起因すると考えられる。他には、ピペ
ラ シ リ ン /タ ゾ バ ク タ ム や バ ン コ マ イ シ ン な ど の 広 域 抗 菌 薬 に よ る 腎 毒 性 や 、C.
difficile infection を含む二次感染発症増加と関連しており、肺炎患者の腎毒性や二次感

-2-

染は死亡リスク増加と関連するメカニズムも考えられる。
本研究ではいくつかの limitation がある。まず、本研究は以前行われた前向き観察研
究の post hoc 解析である。次に、未知の交絡因子や、症例数が少ないことも挙げられ
る。そのため主解析に多変量解析を用い、結果の頑健性を確認するため複数の感度分
析を行なった。さらに、本研究は新型コロナウイルス感染症の流行前のデータである。
しかし新型コロナウイルス感染症流行の時代でも、新型コロナウイルスによる肺炎以
外の市中肺炎には本研究結果は適応できると考えられる。これらの limitation はある
が、本研究結果は薬剤耐性菌低リスクの市中肺炎入院患者に対する適切な初期抗菌薬
選択を行う上での貴重な情報である。
【結語】
本研究は薬剤耐性菌低リスクの市中肺炎入院患者に対する広域抗菌薬投与が、死亡
率上昇と関連することを明らかにした。従って、医師は初期抗菌薬を決定する際に薬
剤耐性菌のリスク評価の重要性を認識し、薬剤耐性菌低リスクの市中肺炎への広域抗
菌薬投与は控えるべきだと考えられた。

-3-

Table 1. Patient characteristics.
Variables
Age ≥80 years
Sex, male
Comorbidities
Neoplastic diseases
Chronic lung diseases
Congestive heart failure
Chronic renal diseases
Chronic dialysis
Chronic liver diseases
Central nervous system disorders
Diabetes mellitus
Immunosuppressiona
Non-ambulatory statusb
Pneumonia type
Community-acquired pneumonia
Healthcare-associated pneumonia
Physical findings
Orientation disturbance, confusion
Systolic blood pressure <90 mmHg
Pulse rate ≥125 beats/min
Respiratory rate ≥30 breaths/min
Body temperature <36℃
Laboratory findings
White blood cell count <4,000 cells/μL
Hematocrit <30.0%
Platelet count <100,000 cells/μL
Albumin <3.0 g/dL
Total bilirubin ≥1.2 mg/dLc
Glucose <60 mg/dL or ≥250 mg/dLd
Blood urea nitrogen ≥20 mg/dL
Creatinine ≥1.2 mg/dL
Sodium concentration <130 mmol/L or ≥150 mmol/L
Potassium concentration <3.0 mmol/L or ≥6.0 mmol/L
C-reactive protein ≥20 mg/dL
pH <7.35e
PaO2/FIO2 ratio ≤ 250e
PaCO2 ≥50 Torre
Radiological findings
Bilateral lung involvement
Pleural effusion
Pneumonia Severity Index classf
I–III (mild)
IV (moderate)
V (severe)

Standard therapy
(n = 257)
77 (30.0)
169 (65.8)

Extended-spectrum therapy
(n = 159)
61 (38.4)
118 (74.2)

36 (14.0)
89 (34.6)
33 (12.8)
24 (9.3)
4 (1.6)
6 (2.3)
25 (9.7)
45 (17.5)
11 (4.3)
20 (7.8)

30 (18.9)
71 (44.7)
27 (17.0)
12 (7.5)
3 (1.9)
5 (3.1)
28 (17.6)
24 (15.1)
19 (11.9)
30 (18.9)

208 (80.9)
49 (19.1)

102 (64.2)
57 (35.8)

36 (14.0)
7 (2.7)
20 (7.8)
41 (16.0)
1 (0.4)

41 (25.8)
15 (9.4)
26 (16.4)
47 (29.6)
5 (3.1)

5 (1.9)
21 (8.2)
1 (0.4)
48 (18.7)
40 (15.7)
12 (4.7)
98 (38.1)
52 (20.2)
18 (7.0)
8 (3.1)
66 (25.7)
14 (5.6)
61 (23.7)
13 (5.2)

8 (5.0)
20 (12.6)
13 (8.2)
67 (42.1)
29 (18.4)
12 (7.6)
83 (52.2)
37 (23.3)
19 (11.9)
7 (4.4)
48 (30.2)
24 (16.8)
69 (43.4)
20 (14.0)

106 (41.2)
40 (15.6)

96 (60.4)
35 (22.0)

114 (45.2)
106 (42.1)
32 (12.7)

33 (22.9)
60 (41.7)
51 (35.4)

Data are presented as no (%). Abbreviation: PaO2, partial pressure of oxygen; FIO2, fraction of inspiration oxygen;
PaCO2, partial pressure of carbon dioxide.
aImmunosuppression included any immunosuppressive disease, such as congenital or acquired immunodeficiency,
hematologic diseases, and neutropenia (1,000 cells/μL), treatment with immunosuppressive drugs within the previous
30 days, or corticosteroids at a daily dose of at least 10 mg/day of a prednisone equivalent for more than 2 weeks.
bNon-ambulatory status was defined as being bedridden or using a wheelchair due to difficulty in walking.
cThe number of patients in which total bilirubin was assessed was 255 and 158 in the standard therapy and the extendedspectrum therapy groups, respectively.
dThe number of patients in which glucose was assessed was 256 and 157 in the standard therapy and the extendedspectrum therapy groups, respectively.
eArterial blood gas analysis was performed in 248 and 143 in the standard therapy and the extended-spectrum therapy
groups, respectively. For patients in whom arterial blood gas analyses were not performed, PaO2 was estimated from
SpO2.
fThe Pneumonia Severity Index was assessed in 252 receiving standard therapy and 144 receiving extended-spectrum
therapy.

-4-

Table 2. Administered initial antibiotics.
Standard therapy
(n = 257)

Antibiotics

Extended-spectrum
therapy
(n = 159)

Non-severe
(n = 215)

Severe
(n = 42)

Non-severe
(n = 93)

Severe
(n = 66)

16 (7.4)

0 (0)









23 (24.7)

11 (16.7)





9 (9.7)

1 (1.5)





4 (4.3)

12 (18.2)

Ampicillin-sulbactam + azithromycin

87 (40.5)

22 (52.4)





Ceftriaxone + azithromycin

112 (52.1)

17 (40.5)





0 (0)

2 (4.8)





0 (0)

1 (2.4)





Piperacillin-tazobactam + macrolides





20 (21.5)

7 (10.6)

Piperacillin-tazobactam + levofloxacin





4 (4.3)

3 (4.5)





7 (7.5)

4 (6.1)





13 (14.0)

13 (19.7)





10 (10.8)

8 (12.1)

Monotherapy
Quinolonesa
Piperacillin-tazobactam
Antipseudomonal

cephalosporinsb

Carbapenemsc
Combination therapy

Ampicillin-sulbactam + levofloxacin
Ceftriaxone + levofloxacin
d

Antipseudomonal

cephalosporinsb

Carbapenemsc

+ azithromycin

Carbapenemsc

+ levofloxacin

+ azithromycin

Piperacillin-tazobactam + anti-MRSA

antibioticse





0 (0)

2 (3.0)

Piperacillin-tazobactam + azithromycin + anti-MRSA antibioticse





1 (1.1)

1 (1.5)

Meropenem + anti-MRSA antibioticse





1 (1.1)

1 (1.5)

Meropenem + azithromycin + vancomycin





0 (0)

1 (1.5)

Meropenem + levofloxacin + vancomycin





0 (0)

1 (1.5)

Ceftriaxone + teicoplanin





0 (0)

1 (1.5)

Levofloxacin + linezolid





1 (1.1)

0 (0)

Abbreviations: MRSA, methicillin-resistant Staphylococcus aureus.
Data are presented as no (%).
aMoxifloxacin, levofloxacin or garenoxacin were defined as quinolones.
bCeftazidime, cefepime, cefozopran or cefoperazone-sulbactam were defined as antipseudomonal cephalosporins.
cMeropenem, imipenem-cilastatin or doripenem were defined as carbapenems.
dAzithromycin or clarithromycin were defined as macrolides.
eVancomycin, teicoplanin or linezolid were defined as anti-MRSA antibiotics.

-5-

Table 3. Associations of antibiotics with 30-day mortalities in the crude, multivariable, propensity
score and stratified analyses.
Analysis
No. of events/ no. of patients at risk

30-day all-cause mortality
(%)a

Standard therapy

10/257 (3.9%)

Extended-spectrum therapy

22/159 (13.8%)

Crude analysis—odds ratio (95% CI)

3.97 (1.83–8.62)
b

2.82 (1.20–6.65)

Multivariable analysis—odds ratio (95% CI)
Sensitivity analyses

Multivariable analysis—odds ratio (95% CI)c

2.88 (1.22–6.83)

Propensity score analysis with inverse-probability of treatment weighting
Stratified analysis by Pneumonia Severity Indexe

analysisd

2.82 (1.11–7.16)
3.25 (1.41–7.50)

Abbreviations: CI, confidence interval.
aOverall, 27 patients in the standard therapy group and 10 patients in the extended-spectrum therapy were lost to 30day follow-up; however, they were all discharged from the hospital with improvement in pneumonia.
bOdds ratio from the multivariable logistic regression analysis. Covariables include non-ambulatory status, respiratory
rate ≥30/min, albumin <3.0 g/dL, pH <7.35, blood urea nitrogen ≥20 mg/dL. The analysis comprised 391 patients (248
who underwent standard therapy and 143 who underwent extended-spectrum therapy). 25 patients were excluded due
to missing values.
cOdds ratio from the multivariable logistic regression analysis. Covariables include age ≥80 yr, non-ambulatory status,
body temperature <36.0°C, respiratory rate ≥30/min, white blood cell count ≤4,000 cells/μL, hematocrit <30.0%,
albumin <3.0 g/dL, arterial carbon dioxide partial pressure ≥50 Torr. The analysis comprised 391 patients (248 who
underwent standard therapy and 143 who underwent extended-spectrum therapy). 25 patients were excluded due to
missing values.
dOdds ratio from the inverse-probability of treatment weighting analysis according to the propensity score for
antibiotics. The analysis comprised 389 patients (247 who underwent standard therapy and 142 who underwent
extended-spectrum therapy). 27 patients were excluded due to missing values.
eOdds ratio from the stratified analysis by Pneumonia Severity Index classes. The analysis comprised 396 patients (252
who underwent standard therapy and 144 who underwent extended-spectrum therapy). 20 patients were excluded due
to missing values.

-6-

Figure 1. Patient flow.
Abbreviations: DRP, drug-resistant pathogen; CAP, community-acquired pneumonia.
CAP-DRPs were defined as pathogens not susceptible to antibiotics commonly administered in patients with CAP,
including nonantipseudomonal β-lactam (ceftriaxone or ampicillin-sulbactam), macrolides (azithromycin or
clarithromycin), and fluoroquinolones (moxifloxacin, levofloxacin or garenoxacin).
aIdentified DRPs were as follows: 10, Pseudomonas aeruginosa; 18, methicillin-resistant Staphylococcus aureus; and
3, Stenotrophomonas maltophilia in nonsevere patients; and 4, P. aeruginosa; 2, methicillin-resistant S. aureus patients
with severe CAP. P. aeruginosa and methicillin-resistant S. aureus were detected simultaneously in four patients, two
nonsevere and two severe.
bPatients at low risk of CAP-DRPs were defined as those without prior isolation of DRPs and those with severe CAP
and not at a high risk of CAP-DRPs using locally validated prediction rules in Japan.
cStandard therapy involved a nonantipseudomonal β-lactam plus a macrolide (or minocycline) or a respiratory
fluoroquinolone for patients with nonsevere CAP and a nonantipseudomonal β-lactam plus a macrolide or a
nonantipseudomonal β-lactam plus a respiratory fluoroquinolone for patients with severe CAP. Extended-spectrum
therapy was defined as any antibiotics against P. aeruginosa or methicillin-resistant S. aureus.

-7-

Figure 2.30-day mortality in the treatment groups based on severity.
Abbreviation: CAP, community-acquired pneumonia.
Standard therapy involved a nonantipseudomonal β-lactam plus a macrolide (or minocycline) or a respiratory
fluoroquinolone for patients with nonsevere CAP and a nonantipseudomonal β-lactam plus a macrolide or a
nonantipseudomonal β-lactam plus a respiratory fluoroquinolone for patients with severe CAP. Extended-spectrum
therapy was defined as any antibiotics against Pseudomonas aeruginosa or methicillin-resistant Staphylococcus
aureus.
Proportions of 30-day mortality for the standard therapy and extended-spectrum therapy groups were compared for all
patients (a), those with nonsevere CAP (b), and those with severe CAP (c).

-8-

この論文で使われている画像

参考文献

All authors meet the International Committee of Medical Journal Editors authorship criteria. HK and YS designed this study. DK,

YS, HK, TS, YM, TY, and HS participated in data acquisition. HK, YS,

and SM created the statistical analysis plan, which was reviewed

by all authors. HK, YS, TS, YM, MY, AM, KS, KM, RE, and SM contributed to data interpretation. HS and YH contributed to study supervision. HK and YS wrote the initial draft of the manuscript. TS,

YM, MY, AM, TY, and SM contributed to the critical revision of the

manuscript for important intellectual content. All authors approved

the final draft.

Aliberti S, Di Pasquale M, Zanaboni AM, Cosentini R, Brambilla AM, Seghezzi S,

et al. Stratifying risk factors for multidrug-resistant pathogens in hospitalized patients coming from the community with pneumonia. Clin Infect Dis

2012;54:470–8.

Aliberti S, Dela Cruz CS, Amati F, Sotgiu G, Restrepo MI. Community-acquired pneumonia. Lancet 2021;398:906–19.

American Thoracic Society. Infectious Diseases Society of America. Guidelines

for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med

2005;171:388–416.

Attridge RT, Frei CR, Restrepo MI, Lawson KA, Ryan L, Pugh MJ, et al. Guideline-concordant therapy and outcomes in healthcare-associated pneumonia. Eur Respir

J 2011;38:878–87.

Becerra MB, Becerra BJ, Banta JE, Safdar N. Impact of Clostridium difficile infection

among pneumonia and urinary tract infection hospitalizations: an analysis of

the Nationwide inpatient sample. BMC Infect Dis 2015;15:254.

Bellos I, Karageorgiou V, Pergialiotis V, Perrea DN. Acute kidney injury following the

concurrent administration of antipseudomonal beta-lactams and vancomycin: a

network meta-analysis. Clin Microbiol Infect 2020;26:696–705.

Chawla LS, Amdur RL, Faselis C, Li P, Kimmel PL, Palant CE. Impact of acute

kidney injury in patients hospitalized with pneumonia. Crit Care Med

2017;45:600–6.

Cole SR, Hernán MA. Constructing inverse probability weights for marginal structural models. Am J Epidemiol 2008;168:656–64.

España PP, Capelastegui A, Gorordo I, Esteban C, Oribe M, Ortega M, et al. Development and validation of a clinical prediction rule for severe community-acquired

pneumonia. Am J Respir Crit Care Med 2006;174:1249–56.

Ewig S, Kolditz M, Pletz MW, Chalmers J. Healthcare-associated pneumonia: is

there any reason to continue to utilize this label in 2019? Clin Microbiol Infect

2019;25:1173–9.

Fine MJ, Auble TE, Yealy DM, Hanusa BH, Weissfeld LA, Singer DE, et al. A prediction

rule to identify low-risk patients with community-acquired pneumonia. N Engl

J Med 1997;336:243–50.

Gleason PP, Meehan TP, Fine JM, Galusha DH, Fine MJ. Associations between initial

antimicrobial therapy and medical outcomes for hospitalized elderly patients

with pneumonia. Arch Intern Med 1999;159:2562–72.

Jones BE, Ying J, Stevens V, Haroldsen C, He T, Nevers M, et al. Empirical anti-MRSA

vs standard antibiotic therapy and risk of 30-day mortality in patients hospitalized for pneumonia. JAMA Intern Med 2020;180:552–60.

Klompas M. Overuse of broad-spectrum antibiotics for pneumonia. JAMA Intern

Med 2020;180:485–6.

Kobayashi D, Shindo Y, Ito R, Iwaki M, Okumura J, Sakakibara T, et al. Validation of

the prediction rules identifying drug-resistant pathogens in community-onset

pneumonia. Infect Drug Resist 2018;11:1703–13.

Kollef MH, Morrow LE, Baughman RP, Craven DE, McGowan JE, Jr Micek ST, et al.

Health care-associated pneumonia (HCAP): a critical appraisal to improve identification, management, and outcomes–proceedings of the HCAP summit. Clin

Infect Dis 2008;46:S296–334.

Kumar A, Ellis P, Arabi Y, Roberts D, Light B, Parrillo JE, et al. Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human

septic shock. Chest 2009;136:1237–48.

Lee JD, Heintz BH, Mosher HJ, Livorsi DJ, Egge JA, Lund BC. Risk of acute kidney injury and clostridioides difficile infection with piperacillin/tazobactam, cefepime,

and meropenem with or without vancomycin. Clin Infect Dis 2021;73:e1579–86.

Luther MK, Timbrook TT, Caffrey AR, Dosa D, Lodise TP, LaPlante KL. Vancomycin

plus piperacillin-tazobactam and acute kidney injury in adults: a systematic review and meta-analysis. Crit Care Med 2018;46:12–20.

Mandell LA, Wunderink RG, Anzueto A, Bartlett JG, Campbell GD, Dean NC, et al.

Infectious Diseases Society of America/American Thoracic Society consensus

guidelines on the management of community-acquired pneumonia in adults.

Clin Infect Dis 2007;44:S27–72.

McDonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC, Coffin SE, et al. Clinical practice guidelines for clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and

Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis

2018;66:987–94.

Menéndez R, Torres A, Zalacaín R, Aspa J, Martín-Villasclaras JJ, Borderías L, et al.

Guidelines for the treatment of community-acquired pneumonia: predictors of

adherence and outcome. Am J Respir Crit Care Med 2005;172:757–62.

Funding

This work was partially supported by the Japan Society for

the Promotion of Science KAKENHI (grant number 20K08517). This

study was also supported by the Central Japan Lung Study Group,

a nonprofit organization supported by unrestricted donations from

the following pharmaceutical companies: Chugai Pharmaceutical

Co., Ltd.; Shionogi & Co., Ltd.; Daiichi Sankyo Co., Ltd.; Dainippon Sumitomo Pharma Co., Ltd.; Janssen Pharmaceutical K.K.; Eli

Lilly Japan K.K.; Taisho Toyama Pharmaceutical Co., Ltd.; Meiji Seika

Pharma Co., Ltd.; MSD K.K.; Bayer Holding Ltd.; Astellas Pharma

Inc.; and Nippon Boehringer Ingelheim Co., Ltd. The founders of

the Central Japan Lung Study Group had no role in the design and

conduct of the study; gathering, management, analysis, and interpretation of data; and preparation of the manuscript.

Declaration of Competing Interest

All of the following information provides relevant financial activities outside of the submitted work. YS reports personal fees

(payment for lectures, including service on speaker bureaus) from

KYORIN Pharmaceutical Co., Ltd.; AstraZeneca K.K.; Daiichi Sankyo

Company, Limited; Nippon Boehringer Ingelheim Co., Ltd.; GlaxoSmithKline plc; and Gilead Sciences Inc. and participates as a

member of the case adjudication committee of GlaxoSmithKline

Biologicals SA. TY reports grants and personal fees (payment for

lectures, including service on speakers bureaus) from Shionogi &

Co., Ltd.; Dainippon Sumitomo Pharma Co., Ltd.; and MSD K.K. SM

reports personal fees (payment for consultations in other studies) from Takeda Pharmaceutical Co., Ltd. YH reports grants and

personal fees (payment for lectures, including service on speakers

bureaus) from Chugai Pharmaceutical Co., Ltd.; MSD K.K.; GlaxoSmithKline plc; KYORIN Pharmaceutical Co., Ltd.; Pfizer Japan Inc.;

Meiji Seika Pharma Co, Ltd.; Sanofi K.K.; and Daiichi Sankyo Inc. All

other authors have no competing interests to declare.

Acknowledgments

The authors would like to thank Drs. Ryota Ito, Mai Iwaki, Yuka

Tomita, Mitsutaka Iguchi, Tomohiko Ogasawara, Yasuteru Sugino,

and Hiroyuki Taniguchi for the acquisition of data; Drs. Yosuke

Goto, Kunihiko Takahashi, and Nancy Thabet for their comments

on the manuscript. The authors are grateful to the clinical research

131

H. Kobayashi, Y. Shindo, D. Kobayashi et al.

International Journal of Infectious Diseases 124 (2022) 124–132

Metersky ML, Frei CR, Mortensen EM. Predictors of Pseudomonas and methicillin-resistant Staphylococcus aureus in hospitalized patients with healthcare-associated pneumonia. Respirology 2016;21:157–63.

Metlay JP, Waterer GW, Long AC, Anzueto A, Brozek J, Crothers K, et al. Diagnosis

and treatment of adults with community-acquired pneumonia. An official clinical practice guideline of the American Thoracic Society and Infectious Diseases

Society of America. Am J Respir Crit Care Med 2019;200:e45–67.

Okumura J, Shindo Y, Takahashi K, Sano M, Sugino Y, Yagi T, et al. Mortality

in patients with community-onset pneumonia at low risk of drug-resistant

pathogens: impact of beta-lactam plus macrolide combination therapy. Respirology 2018;23:526–34.

Pletz MW, Blasi F, Chalmers JD, Dela Cruz CS, Feldman C, Luna CM, et al. International perspective on the new 2019 American Thoracic Society/Infectious Diseases Society of America community-acquired pneumonia guideline: a critical

appraisal by a global expert panel. Chest 2020;158:1912–18.

Prina E, Ranzani OT, Polverino E, Cillóniz C, Ferrer M, Fernandez L, et al. Risk factors associated with potentially antibiotic-resistant pathogens in community-acquired pneumonia. Ann Am Thorac Soc 2015;12:153–60.

Shindo Y, Sato S, Maruyama E, Ohashi T, Ogawa M, Hashimoto N, et al. Health–

care-associated pneumonia among hospitalized patients in a Japanese community hospital. Chest 2009;135:633–40.

Shindo Y, Ito R, Kobayashi D, Ando M, Ichikawa M, Shiraki A, et al. Risk factors

for drug-resistant pathogens in community-acquired and healthcare-associated

pneumonia. Am J Respir Crit Care Med 2013;188:985–95.

Shindo Y, Ito R, Kobayashi D, Ando M, Ichikawa M, Goto Y, et al. Risk factors for

30-day mortality in patients with pneumonia who receive appropriate initial

antibiotics: an observational cohort study. Lancet Infect Dis 2015;15:1055–65.

Shindo Y, Hasegawa Y. Regional differences in antibiotic-resistant pathogens

in patients with pneumonia: implications for clinicians. Respirology

2017;22:1536–46.

Shorr AF, Zilberberg MD, Reichley R, Kan J, Hoban A, Hoffman J, et al. Validation of a

clinical score for assessing the risk of resistant pathogens in patients with pneumonia presenting to the emergency department. Clin Infect Dis 2012;54:193–8.

Thibeault C, Suttorp N, Opitz B. The microbiota in pneumonia: from protection to

predisposition. Sci Transl Med 2021;13.

Torres A, Cilloniz C, Niederman MS, Menéndez R, Chalmers JD, Wunderink RG, et al.

Pneumonia. Nat Rev Dis Primers 2021;7:25.

Tumbarello M, De Pascale G, Trecarichi EM, Spanu T, Antonicelli F, Maviglia R, et al.

Clinical outcomes of Pseudomonas aeruginosa pneumonia in intensive care unit

patients. Intensive Care Med 2013;39:682–92.

Vardakas KZ, Trigkidis KK, Boukouvala E, Falagas ME. Clostridium difficile infection

following systemic antibiotic administration in randomised controlled trials: a

systematic review and meta-analysis. Int J Antimicrob Agents 2016;48:1–10.

Venier AG, Gruson D, Lavigne T, Jarno P, L’hériteau F, Coignard B, et al. Identifying new risk factors for Pseudomonas aeruginosa pneumonia in intensive care

units: experience of the French national surveillance, rea-RAISIN. J Hosp Infect

2011;79:44–8.

Webb BJ, Dascomb K, Stenehjem E, Vikram HR, Agrwal N, Sakata K, et al. Derivation

and multicenter validation of the drug resistance in pneumonia clinical prediction score. Antimicrob Agents Chemother 2016;60:2652–63.

Webb BJ, Sorensen J, Jephson A, Mecham I, Dean NC. Broad-spectrum antibiotic use

and poor outcomes in community-onset pneumonia: a cohort study. Eur Respir

J 2019;54.

World Health Organization. Antimicrobial resistance. https://www.who.int/

news-room/fact-sheets/detail/antimicrobial-resistance, 2021 (accessed 13

June 2022).

World Health Organization. The top 10 causes of death. https://www.who.int/

news-room/fact-sheets/detail/the- top- 10- causes- of- death, 2020 (accessed 13

June 2022).

Wunderink RG, Waterer G. Advances in the causes and management of community

acquired pneumonia in adults. BMJ 2017;358:j2471.

132

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る