リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Direct production of 4-hydroxybenzoic acid from cellulose using cellulase-displaying Pichia pastoris」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Direct production of 4-hydroxybenzoic acid from cellulose using cellulase-displaying Pichia pastoris

Inokuma, Kentaro Miyamoto, Shunya Morinaga, Kohei Kobayashi, Yuma Kumokita, Ryota Bamba, Takahiro Ito, Yoichiro Kondo, Akihiko Hasunuma, Tomohisa 神戸大学

2023.04

概要

4-hydroxybenzoic acid (4-HBA) is an industrially important aromatic compound, and there is an urgent need to establish a bioprocess to produce this compound in a sustainable and environmentally friendly manner from renewable feedstocks such as cellulosic biomass. Here, we developed a bioprocess to directly produce 4-HBA from cellulose using a recombinant Pichia pastoris strain that displays heterologous cellulolytic enzymes on its cell surface via the glycosylphosphatidylinositol (GPI)-anchoring system. β-glucosidase (BGL) from Aspergillus aculeatus, endoglucanase (EG) from Trichoderma reesei, and cellobiohydrolase (CBH) from Talaromyces emersonii were co-displayed on the cell surface of P. pastoris using an appropriate GPI-anchoring domain for each enzyme. The cell-surface cellulase activity was further enhanced using P. pastoris SPI1 promoter- and secretion signal sequences. The resulting strains efficiently hydrolyzed phosphoric acid swollen cellulose (PASC) to glucose. Then, we expressed a highly 4-HBA-resistant chorismate pyruvate-lyase (UbiC) from Providencia rustigianii in the cellulase-displaying strain. This strain produced 975 mg/L of 4-HBA from PASC, which corresponding to 36.8% of the theoretical maximum yield, after 96 h of batch fermentation without the addition of commercial cellulase. This 4-HBA yield was over two times higher than that obtained from glucose (12.3% of the theoretical maximum yield). To our knowledge, this is the first report on the direct production of an aromatic compound from cellulose using cellulase-displaying yeast.

この論文で使われている画像

参考文献

15

369

Ata, Ö., Prielhofer R, Gasser, B., Mattanovich, D., & Çalık, P. (2017). Transcriptional engineering

370

of the glyceraldehyde-3-phosphate dehydrogenase promoter for improved heterologous

371

protein production in Pichia pastoris. Biotechnology and Bioengineering, 114(10), 2319-

372

2327. doi:10.1002/bit.26363

373

Averesch, N. J. H., & Krömer, J. O. (2018). Metabolic Engineering of the Shikimate Pathway for

374

Production of Aromatics and Derived Compounds-Present and Future Strain Construction

375

Strategies.

376

doi:10.3389/fbioe.2018.00032

377

378

Frontiers

in

Bioengineering

and

Biotechnology,

6,

32.

Barker, J. L., & Frost, J. W. (2001). Microbial synthesis of p-hydroxybenzoic acid from glucose.

Biotechnology and Bioengineering, 76(4), 376-390. doi:10.1002/bit.10160

379

Costa, C. E., Møller-Hansen, I., Romaní, A., Teixeira, J. A., Borodina, I., & Domingues, L. (2021).

380

Resveratrol Production from Hydrothermally Pretreated Eucalyptus Wood Using

381

Recombinant Industrial Saccharomyces cerevisiae Strains. ACS Synthetic Biology, 10(8),

382

1895-1903. doi:10.1021/acssynbio.1c00120

383

Den Haan, R., Rose, S. H., Lynd, L. R., & van Zyl, W. H. (2007). Hydrolysis and fermentation of

384

amorphous cellulose by recombinant Saccharomyces cerevisiae. Metabolic Engineering,

385

9(1):87-94. doi:10.1016/j.ymben.2006.08.005

386

Dong, C., Qiao, J., Wang, X., Sun, W., Chen, L., Li, S., Wu, K., Ma, L., & Liu, Y. (2020).

387

Engineering Pichia pastoris with surface-display minicellulosomes for carboxymethyl

388

cellulose hydrolysis and ethanol production. Biotechnology for Biofuels, 13, 108.

389

doi:10.1186/s13068-020-01749-1

390

391

Dupres, V., Dufrêne, Y. F., & Heinisch J. J. (2010). Measuring cell wall thickness in living yeast

cells using single molecular rulers. ACS Nano, 4(9), 5498-5504. doi:10.1021/nn101598v

392

Inokuma, K., Bamba, T., Ishii, J., Ito, Y., Hasunuma, T., & Kondo, A. (2016a). Enhanced cell-surface

393

display and secretory production of cellulolytic enzymes with Saccharomyces cerevisiae

16

394

Sed1 signal peptide. Biotechnology and Bioengineering, 113(11), 2358-2366.

395

doi:10.1002/bit.26008

396

Inokuma, K., Hasunuma, T., & Kondo, A. (2014). Efficient yeast cell-surface display of exo- and

397

endo-cellulase using the SED1 anchoring region and its original promoter. Biotechnology for

398

Biofuels, 7, 8. doi:10.1186/1754-6834-7-8

399

Inokuma, K., Hasunuma, T., & Kondo, A. (2016b). Ethanol production from N-acetyl-D-

400

glucosamine

by

401

doi:10.1186/s13568-016-0267-z

Scheffersomyces

stipitis

strains.

AMB

Express,

6(1),

83.

402

Inokuma, K., Hasunuma, T., & Kondo, A. (2018). Whole cell biocatalysts using enzymes displayed

403

on yeast cell surface. In: Chang H (ed.) Emerging Areas in Bioengineering, Wiley-VCH,

404

New York, pp 81–92

405

Inokuma, K., Kitada, Y., Bamba, T., Kobayashi, Y., Yukawa, T., den Haan, R., van Zyl, W. H.,

406

Kondo, A., & Hasunuma, T. (2021). Improving the functionality of surface-engineered yeast

407

cells by altering the cell wall morphology of the host strain. Applied Microbiology and

408

Biotechnology, 105(14-15), 5895-5904. doi:10.1007/s00253-021-11440-6

409

Inokuma, K., Kurono, H., den Haan, R., van Zyl, W. H., Hasunuma, T., & Kondo, A. (2020). Novel

410

strategy for anchorage position control of GPI-attached proteins in the yeast cell wall using

411

different

412

doi:10.1016/j.ymben.2019.11.004

GPI-anchoring

domains.

Metabolic

Engineering,

57,

110-117.

413

Ito, Y., Ishigami, M., Hashiba, N., Nakamura, Y., Terai, G., Hasunuma, T., Ishii, J., & Kondo, A.

414

(2022). Avoiding entry into intracellular protein degradation pathways by signal mutations

415

increases protein secretion in Pichia pastoris. Microbial Biotechnology, 15(9), 2364-2378.

416

doi:10.1111/1751-7915.14061

417

Ito, Y., Terai, G., Ishigami, M., Hashiba, N., Nakamura, Y., Bamba, T., Kumokita, R., Hasunuma,

418

T., Asai, K., Ishii, J., & Kondo, A. (2020). Exchange of endogenous and heterogeneous yeast

17

419

terminators in Pichia pastoris to tune mRNA stability and gene expression. Nucleic Acids

420

Research, 48(22), 13000-13012. doi:10.1093/nar/gkaa1066

421

Karbalaei, M., Rezaee, S. A., & Farsiani, H. (2020). Pichia pastoris: A highly successful expression

422

system for optimal synthesis of heterologous proteins. Journal of Cellular Physiology,

423

235(9), 5867-5881. doi:10.1002/jcp.29583

424

Kitade, Y., Hashimoto, R., Suda, M., Hiraga, K., & Inui, M. (2018). Production of 4-Hydroxybenzoic

425

Acid by an Aerobic Growth-Arrested Bioprocess Using Metabolically Engineered

426

Corynebacterium glutamicum. Applied and Environmental Microbiology, 84(6), e02587-17.

427

doi:10.1128/AEM.02587-17

428

Ko, J. K., & Lee, S. M. (2018). Advances in cellulosic conversion to fuels: engineering yeasts for

429

cellulosic bioethanol and biodiesel production. Current Opinion in Biotechnology, 50, 72-80.

430

doi:10.1016/j.copbio.2017.11.007

431

Kobayashi, Y., Inokuma, K., Matsuda, M., Kondo, A., & Hasunuma, T. (2021). Resveratrol

432

production from several types of saccharide sources by a recombinant Scheffersomyces

433

stipitis

434

doi:10.1016/j.mec.2021.e00188

strain.

Metabolic

Engineering

Communications,

13,

e00188.

435

Krömer, J. O., Nunez-Bernal, D., Averesch, N. J. H., Hampe, J., Varela, J., & Varela, C. (2013).

436

Production of aromatics in Saccharomyces cerevisiae—A feasibility study. Journal of

437

Biotechnology, 163(2), 184-193. doi:10.1016/j.jbiotec.2012.04.014

438

Kumokita, R., Bamba, T., Inokuma, K., Yoshida, T., Ito, Y., Kondo, A., & Hasunuma, T. (2022).

439

Construction of an ʟ-Tyrosine Chassis in Pichia pastoris Enhances Aromatic Secondary

440

Metabolite Production from Glycerol. ACS Synthetic Biology, 11(6), 2098-2107.

441

doi:10.1021/acssynbio.2c00047

18

442

Lian, J., Mishra, S., & Zhao, H. (2018). Recent advances in metabolic engineering of Saccharomyces

443

cerevisiae: New tools and their applications. Metabolic Engineering, 50, 85-108.

444

doi:10.1016/j.ymben.2018.04.011

445

446

Lindsey, A. S., & Jeskey, H. (1957). The Kolbe-Schmitt Reaction. Chemical Reviews, 57(4), 583620. doi:10.1021/cr50016a001

447

Liu, Q., Liu, Y., Li, G., Savolainen, O., Chen, Y., & Nielsen, J. (2021). De novo biosynthesis of

448

bioactive isoflavonoids by engineered yeast cell factories. Nature Communications, 12(1),

449

6085. doi:10.1038/s41467-021-26361-1

450

Liu, Q., Yu, T., Li, X., Chen, Y., Campbell, K., Nielsen, J., & Chen, Y. (2019). Rewiring carbon

451

metabolism in yeast for high level production of aromatic chemicals. Nature

452

Communications, 10(1), 4976. doi:10.1038/s41467-019-12961-5

453

Liu, Z., Ho, S. H., Sasaki, K., den Haan, R., Inokuma, K., Ogino, C., van Zyl, W. H., Hasunuma, T.,

454

& Kondo, A. (2016). Engineering of a novel cellulose-adherent cellulolytic Saccharomyces

455

cerevisiae

456

doi:10.1038/srep24550

457

458

for

cellulosic

biofuel

production.

Scientific

Reports,

6,

24550.

Luo, Z. W., Cho, J. S., & Lee, S. Y. (2019). Microbial production of methyl anthranilate, a grape

flavor compound. PNAS, 116(22), 10749-10756. doi:10.1073/pnas.1903875116

459

Manuja, R., Sachdeva, A., Jain, A., & Chaudhary, J. (2013). A comparative review on biological

460

activities of p-hydroxy benzoic acid and its derivatives. International Journal of

461

Pharmaceutical Sciences Review and Research, 22(2), 109-115.

462

Meijnen, J. P., Verhoef, S., Briedjlal, A. A., de Winde, J. H., & Ruijssenaars, H. J. (2011). Improved

463

p-hydroxybenzoate production by engineered Pseudomonas putida S12 by using a mixed-

464

substrate feeding strategy. Applied Microbiology and Biotechnology, 90(3), 885-893.

465

doi:10.1007/s00253-011-3089-6

19

466

Müller, R., Wagener, A., Schmidt, K., & Leistner, E. (1995). Microbial production of specifically

467

ring-13C-labelled 4-hydroxybenzoic acid. Applied Microbiology and Biotechnology, 43(6),

468

985-988. doi:10.1007/BF00166913

469

Patra, P., Das, M., Kundu, P., & Ghosh, A. (2021). Recent advances in systems and synthetic biology

470

approaches for developing novel cell-factories in non-conventional yeasts. Biotechnology

471

Advances, 47, 107695. doi:10.1016/j.biotechadv.2021.107695

472

Rajkumar, A. S., & Morrissey, J. P. (2020). Rational engineering of Kluyveromyces marxianus to

473

create a chassis for the production of aromatic products. Microbial Cell Factories, 19(1), 207.

474

doi:10.1186/s12934-020-01461-7

475

Salgado, J. M., Rodríguez-Solana, R., Curiel, J. A., de Las, Rivas, B., Muñoz, R., & Domínguez, J.

476

M. (2014). Bioproduction of 4-vinylphenol from corn cob alkaline hydrolyzate in two-phase

477

extractive fermentation using free or immobilized recombinant E. coli expressing pad gene.

478

Enzyme and Microbial Technology, 58-59, 22-28. doi:10.1016/j.enzmictec.2014.02.005

479

Su, G. D., Zhang, X., & Lin, Y. (2010). Surface display of active lipase in Pichia pastoris using Sed1

480

as an anchor protein. Biotechnology Letters, 32(8), 1131-1136. doi:10.1007/s10529-010-

481

0270-4

482

Thomas, S. M., DiCosimo, R., & Nagarajan, V. (2002). Biocatalysis: applications and potentials for

483

the chemical industry. Trends in Biotechnology, 20(6), 238-242. doi:10.1016/s0167-

484

7799(02)01935-2

485

486

Tzin, V., & Galili, G. (2010). New Insights into the Shikimate and Aromatic Amino Acids

Biosynthesis Pathways in Plants. Molecular Plant, 3(6), 956-972. doi:10.1093/mp/ssq048

487

Valanciene, E., Jonuskiene, I., Syrpas, M., Augustiniene, E., Matulis, P., Simonavicius, A., & Malys,

488

N. (2020). Advances and Prospects of Phenolic Acids Production, Biorefinery and Analysis.

489

Biomolecules, 10(6), 874. doi:10.3390/biom10060874

20

490

Verhoef, S., Ruijssenaars, H. J., de Bont, J. A., & Wery, J. (2007). Bioproduction of p-

491

hydroxybenzoate from renewable feedstock by solvent-tolerant Pseudomonas putida S12.

492

Journal of Biotechnology, 132(1), 49-56. doi:10.1016/j.jbiotec.2007.08.031

493

Yin, H., Hu, T., Zhuang, Y., & Liu, T. (2020). Metabolic engineering of Saccharomyces cerevisiae

494

for high-level production of gastrodin from glucose. Microbial Cell Factories, 19(1), 218.

495

doi:10.1186/s12934-020-01476-0

496

Yu, S., Plan, M. R., Winter, G., & Krömer, J. O. (2016). Metabolic Engineering of Pseudomonas

497

putida KT2440 for the Production of para-Hydroxy Benzoic Acid. Frontiers in

498

Bioengineering and Biotechnology, 4, 90. doi:10.3389/fbioe.2016.00090

499

Zhang, L., Liang, S., Zhou, X., Jin, Z., Jiang, F., Han, S., Zheng, S., & Lin, Y. (2013). Screening for

500

glycosylphosphatidylinositol-modified cell wall proteins in Pichia pastoris and their

501

recombinant expression on the cell surface. Applied and Environmental Microbiology,

502

79(18), 5519-5526. doi:10.1128/AEM.00824-13

503

504

21

505

Table 1 Characteristics of yeast strains and plasmids used in this study

Yeast strains and

Relevant genotype

Source

CBS7435

Wild type

ATCC

Pp-UbiC

CBS7435/pIPrUbiC [GAPP–PrUbiC–AOX1T, G418R]

This study

Pp-BG-

CBS7435/pIBG-PpGMSed1 [GAPP–MFα(L42S)SP–A. aculeatus

This study

GMSed1

BGL1–SED1A -AOX1T, G418 ]

Pp-BG-

CBS7435/pIBG-PpGMG5 [GAPP–MFα(L42S)SP–A. aculeatus

GMG5

BGL1–GCW5A -AOX1T, G418 ]

Pp-BG-

CBS7435/pIBG-PpGMG12 [GAPP–MFα(L42S)SP–A. aculeatus

GMG12

BGL1–GCW12A -AOX1T, G418 ]

Pp-BG-

CBS7435/pIBG-PpGMG14 [GAPP–MFα(L42S)SP–A. aculeatus

GMG14

BGL1–GCW14A -AOX1T, G418 ]

Pp-BG-

CBS7435/pIBG-PpGMG19 [GAPP–MFα(L42S)SP–A. aculeatus

GMG19

BGL1–GCW19A -AOX1T, G418R]

Pp-BG-

CBS7435/pIBG-PpGMG21 [GAPP–MFα(L42S)SP–A. aculeatus

GMG21

BGL1–GCW21A -AOX1T, G418 ]

Pp-BG-

CBS7435/pIBG-PpGMG28 [GAPP–MFα(L42S)SP–A. aculeatus

GMG28

BGL1–GCW28A -AOX1T, G418 ]

Pp-BG-

CBS7435/pIBG-PpGMG30 [GAPP–MFα(L42S)SP–A. aculeatus

GMG30

BGL1–GCW30A -AOX1T, G418 ]

Pp-BG-

CBS7435/pIBG-PpGMG34 [GAPP–MFα(L42S)SP–A. aculeatus

GMG34

BGL1–GCW34A -AOX1T, G418 ]

Pp-BG-

CBS7435/pIBG-PpGMG42 [GAPP–MFα(L42S)SP–A. aculeatus

GMG42

BGL1–GCW42A -AOX1T, G418R]

Pp-BG-

CBS7435/pIBG-PpGMG45 [GAPP–MFα(L42S)SP–A. aculeatus

GMG45

BGL1–GCW45A -AOX1T, G418 ]

Pp-BG-

CBS7435/pIBG-PpGMG49 [GAPP–MFα(L42S)SP–A. aculeatus

GMG49

BGL1–GCW49A -AOX1T, G418 ]

Pp-BG-

CBS7435/pIBG-PpGMG51 [GAPP–MFα(L42S)SP–A. aculeatus

GMG51

BGL1–GCW51A -AOX1T, G418 ]

Pp-BG-

CBS7435/pIBG-PpGMG61 [GAPP–MFα(L42S)SP–A. aculeatus

GMG61

BGL1–GCW61A -AOX1T, G418 ]

Pp-BG-

CBS7435/pIBG-PpSSG61 [SPI1P–SPI1SP–A. aculeatus BGL1–

SSG61

GCW61A -AOX1T, G418R]

Pp-EG-

CBS7435/pIBG-PpGMSed1 [GAPP–MFα(L42S)SP–T. reesei EGII–

GMSed1

SED1A -AOX1T, G418 ]

plasmids

P. pastoris

This study

This study

This study

This study

This study

This study

This study

This study

This study

This study

This study

This study

This study

This study

This study

22

Pp-EG-

CBS7435/pIBG-PpGMG5 [GAPP–MFα(L42S)SP–T. reesei EGII–

GMG5

GCW5A -AOX1T, G418R]

Pp-EG-

CBS7435/pIBG-PpGMG12 [GAPP–MFα(L42S)SP–T. reesei EGII–

GMG12

GCW12A -AOX1T, G418 ]

Pp-EG-

CBS7435/pIBG-PpGMG14 [GAPP–MFα(L42S)SP–T. reesei EGII–

GMG14

GCW14A -AOX1T, G418 ]

Pp-EG-

CBS7435/pIBG-PpGMG19 [GAPP–MFα(L42S)SP–T. reesei EGII–

GMG19

GCW19A -AOX1T, G418 ]

Pp-EG-

CBS7435/pIBG-PpGMG21 [GAPP–MFα(L42S)SP–T. reesei EGII–

GMG21

GCW21A -AOX1T, G418R]

Pp-EG-

CBS7435/pIBG-PpGMG28 [GAPP–MFα(L42S)SP–T. reesei EGII–

GMG28

GCW28A -AOX1T, G418R]

Pp-EG-

CBS7435/pIBG-PpGMG30 [GAPP–MFα(L42S)SP–T. reesei EGII–

GMG30

GCW30A -AOX1T, G418 ]

Pp-EG-

CBS7435/pIBG-PpGMG34 [GAPP–MFα(L42S)SP–T. reesei EGII–

GMG34

GCW34A -AOX1T, G418 ]

Pp-EG-

CBS7435/pIBG-PpGMG42 [GAPP–MFα(L42S)SP–T. reesei EGII–

GMG42

GCW42A -AOX1T, G418 ]

Pp-EG-

CBS7435/pIBG-PpGMG45 [GAPP–MFα(L42S)SP–T. reesei EGII–

GMG45

GCW45A -AOX1T, G418R]

Pp-EG-

CBS7435/pIBG-PpGMG49 [GAPP–MFα(L42S)SP–T. reesei EGII–

GMG49

GCW49A -AOX1T, G418R]

Pp-EG-

CBS7435/pIBG-PpGMG51 [GAPP–MFα(L42S)SP–T. reesei EGII–

GMG51

GCW51A -AOX1T, G418 ]

Pp-EG-

CBS7435/pIBG-PpGMG61 [GAPP–MFα(L42S)SP–T. reesei EGII–

GMG61

GCW61A -AOX1T, G418 ]

Pp-EG-

CBS7435/pIBG-PpSSG34 [SPI1P–SPI1SP–T. reesei EGII–GCW34A

SSG34

-AOX1T, G418 ]

Pp-BEC

CBS7435/ pIBG-PpSSG61 [SPI1P–SPI1SP–A. aculeatus BGL1–

This study

This study

This study

This study

This study

This study

This study

This study

This study

This study

This study

This study

This study

This study

This study

GCW61A -AOX1T, G418R], pIH-EG-PpSSG34 [SPI1P–SPI1SP–T.

reesei EGII–GCW34A -AOX1T, HygR], pIZ-CBH-PpSSG34 [SPI1P–

SPI1SP–T. emersonii CBH1–GCW34A -AOX1T, ZeoR]

Pp-BEC-

CBS7435/ pIBG-PpSSG61 [SPI1P–SPI1SP–A. aculeatus BGL1–

UbiC

GCW61A -AOX1T, G418 ], pIH-EG-PpSSG34 [SPI1P–SPI1SP–T.

This study

reesei EGII–GCW34A -AOX1T, HygR], pIZ-CBH-PpSSG34 [SPI1P–

SPI1SP–T. emersonii CBH1–GCW34A -AOX1T, ZeoR], pIN-PrUbiC

[GAPP–PrUbiC–AOX1T, NATR]

Plasmids

pPGP_L42S_

G418R GAPP–MFα(L42S)SP-scFv–AOX1T

(Ito et al. 2022)

scFv

23

pPGPH_DO

HygR GAPP–MjDOD–AOX1T

(Ito et al. 2020)

ZeoR GAPP–EGFP–AOX1T

(Kumokita et al.

pPGPZEGFP

pPNS-NHCH

2022)

NAT GAPP–EcNMCH–AOX1T

(Kumokita et al.

2022)

pIPrUbiC

G418R GAPP–PrUbiC–AOX1T

This study

pIN-PrUbiC

NAT GAPP–PrUbiC–AOX1T

This study

pIBG-SS

HIS3 SED1P–GLUASP–A. aculeatus BGL1–SED1A–SAG1T

(Inokuma et al. 2014)

pIBG-

G418R GAPP–MFα(L42S)SP–A. aculeatus BGL1–SED1A -AOX1T

This study

G418R GAPP–MFα(L42S)SP–A. aculeatus BGL1–GCW5A -AOX1T

This study

G418R GAPP–MFα(L42S)SP–A. aculeatus BGL1–GCW12A -AOX1T

This study

G418R GAPP–MFα(L42S)SP–A. aculeatus BGL1–GCW14A -AOX1T

This study

G418R GAPP–MFα(L42S)SP–A. aculeatus BGL1–GCW19A -AOX1T

This study

G418R GAPP–MFα(L42S)SP–A. aculeatus BGL1–GCW21A -AOX1T

This study

pIBG-

G418R GAPP–MFα(L42S)SP–A. aculeatus BGL1I–GCW28A -

This study

PpGMG28

AOX1T

pIBG-

G418R GAPP–MFα(L42S)SP–A. aculeatus BGL1–GCW30A -AOX1T

This study

G418R GAPP–MFα(L42S)SP–A. aculeatus BGL1–GCW34A -AOX1T

This study

G418R GAPP–MFα(L42S)SP–A. aculeatus BGL1–GCW42A -AOX1T

This study

G418R GAPP–MFα(L42S)SP–A. aculeatus BGL1–GCW45A -AOX1T

This study

G418R GAPP–MFα(L42S)SP–A. aculeatus BGL1–GCW49A -AOX1T

This study

G418R GAPP–MFα(L42S)SP–A. aculeatus BGL1–GCW51A -AOX1T

This study

G418R GAPP–MFα(L42S)SP–A. aculeatus BGL1–GCW61A -AOX1T

This study

G418R SPI1P–SPI1SP–A. aculeatus BGL1–GCW61A -AOX1T

This study

PpGMSed1

pIBGPpGMG5

pIBGPpGMG12

pIBGPpGMG14

pIBGPpGMG19

pIBGPpGMG21

PpGMG30

pIBGPpGMG34

pIBGPpGMG42

pIBGPpGMG45

pIBGPpGMG49

pIBGPpGMG51

pIBGPpGMG61

pIBGPpSSG61

24

pIEG-SS

HIS3 SED1P–GLUASP–T. reesei EGII–SED1A–SAG1T

(Inokuma et al. 2014)

pIEG-

G418R GAPP–MFα(L42S)SP–T. reesei EGII–SED1A -AOX1T

This study

G418R GAPP–MFα(L42S)SP–T. reesei EGII–GCW5A -AOX1T

This study

G418R GAPP–MFα(L42S)SP–T. reesei EGII–GCW12A -AOX1T

This study

G418R GAPP–MFα(L42S)SP–T. reesei EGII–GCW14A -AOX1T

This study

G418R GAPP–MFα(L42S)SP–T. reesei EGII–GCW19A -AOX1T

This study

G418R GAPP–MFα(L42S)SP–T. reesei EGII–GCW21A -AOX1T

This study

G418R GAPP–MFα(L42S)SP–T. reesei EGII–GCW28A -AOX1T

This study

G418R GAPP–MFα(L42S)SP–T. reesei EGII–GCW30A -AOX1T

This study

G418R GAPP–MFα(L42S)SP–T. reesei EGII–GCW34A -AOX1T

This study

G418R GAPP–MFα(L42S)SP–T. reesei EGII–GCW42A -AOX1T

This study

G418R GAPP–MFα(L42S)SP–T. reesei EGII–GCW45A -AOX1T

This study

G418R GAPP–MFα(L42S)SP–T. reesei EGII–GCW49A -AOX1T

This study

G418R GAPP–MFα(L42S)SP–T. reesei EGII–GCW51A -AOX1T

This study

G418R GAPP–MFα(L42S)SP–T. reesei EGII–GCW61A -AOX1T

This study

G418R SPI1P–SPI1SP–T. reesei EGII–GCW34A -AOX1T

This study

HygR SPI1P–SPI1SP–T. reesei EGII–GCW34A -AOX1T

This study

pIU5-CBH1D

URA3 SED1P–GLUASP–T. emersonii CBH1–SED1A–SAG1T

(Liu et al. 2016)

pICBH1-

G418 SPI1P–SPI1SP–T. emersonii CBH1–GCW34A -AOX1T

This study

ZeoR SPI1P–SPI1SP–T. emersonii CBH1–GCW34A -AOX1T,

This study

PpGMSed1

pIEGPpGMG5

pIEGPpGMG12

pIEGPpGMG14

pIEGPpGMG19

pIEGPpGMG21

pIEGPpGMG28

pIEGPpGMG30

pIEGPpGMG34

pIEGPpGMG42

pIEGPpGMG45

pIEGPpGMG49

pIEGPpGMG51

pIEGPpGMG61

pIEGPpSSG34

pIH-EGPpSSG34

PpSSG34

pIZ-CBH1PpSSG34

506

A. aculeatus, Aspergillus aculeatus; T. reesei, Trichoderma reesei; T. emersonii, Talaromyces

507

emersonii; P, promoter; SP, secretion signal peptide sequence; A, anchoring region; T, terminator,

25

508

PrUbiC, Providencia rustigianii chorismate pyruvate-lyase; scFv, single-chain variable fragment;

509

GLUA, Rhizopus oryzae glucoamylase; MFα, S. cerevisiae alpha-factor; MjDOD, Mirabilis jalapa

510

DOPA deoxygenase; EcNMCH, Eschscholzia californica N-methylcoclaurine hydroxylase

511

512

26

513

514

Figure 1 Schematic pathway of 4-HBA biosynthesis in P. pastoris. Green and red arrows represent

515

reactions by heterologous enzymes. The dashed arrows indicate multiple enzymatic steps. G6P,

516

glucose-6-phosphate; PEP, phosphoenolpyruvate; E4P, erythrose-4-phosphate; DAHP, 3-deoxy-D-

517

arabinoheptulosonate 7-phosphate.

518

519

27

520

521

Figure 2 Time course of 4-HBA production in YPD medium by P. pastoris strains.

522

523

28

524

525

526

Figure 3 Comparison of cell-surface activity of (a) BGL and (b) EG. The enzymes were displayed

527

using different GPI-anchoring domains in P. pastoris after cultivation in YPD medium for 48 h. The

528

relative EG activity of each strain is shown as a fold-change in EG activity relative to the average

529

level observed with strain Pp-EG-GMSed1 which uses Sed1p.

530

531

29

532

533

534

Figure 4 The effect of replacing the promoter- and secretion signal sequences on cell-surface activity

535

of (a) BGL and (b) EG. *p < 0.05 for significant differences between two compared groups.

536

537

30

538

539

Figure 5 PASCase activity of the BGL-, EG-, and CBH co-displaying P. pastoris strain (Pp-BEC).

540

541

31

542

543

Figure 6 Time course of direct 4-HBA production through SSF of 10 g/L PASC by Pp-UbiC and

544

Pp-BEC-UbiC strains.

545

546

32

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る