リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Caffeic acid production from glucose using metabolically engineered Escherichia coli」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Caffeic acid production from glucose using metabolically engineered Escherichia coli

Sakae, Kosuke Nonaka, Daisuke Kishida, Mayumi Hirata, Yuuki Fujiwara, Ryosuke Kondo, Akihiko Noda, Shuhei Tanaka, Tsutomu 神戸大学

2023.03

概要

Caffeic acid (3,4-dihydroxycinnamic acid) is a precursor for high-valued compounds with anticancer, antiviral activities, and anti-inflammatory making it an important substance in the food additive, cosmetics, and pharmaceutical industries. Here, we developed an engineered Escherichia coli strain capable of directly producing high levels of caffeic acid from glucose. Tyrosine ammonia-lyase from Rhodotorula glutinis (RgTAL) and p-coumaric acid 3-hydroxylase from Saccharothrix espanaensis (SeC3H) were expressed. Next, feedback-resistant chorismate mutase/prephenate dehydrogenase, was introduced to promote l-tyrosine synthesis. This engineered strain CA3 produced 1.58 g/L of caffeic acid from glucose without tyrosine supplemented to the medium. Furthermore, to reduce p-coumaric acid accumulation, 4-hydroxyphenylacetate 3-hydroxylase from Pseudomonas aeruginosa (PaHpaBC) was introduced. Finally, an engineered strain CA8 directly produced 6.17 g/L of caffeic acid from glucose using a jar fermenter. The E. coli developed in this study would be helpful as a chassis strain to produce value-added caffeic acid-derivatives.

この論文で使われている画像

参考文献

291

[1] D.K. Maurya, T.P. Devasagayam, Antioxidant and prooxidant nature of hydroxycinnamic acid

292

derivatives ferulic and caffeic acids, Food Chem Toxicol. ;48 (2010) 3369-3373.

293

doi:10.1016/j.fct.2010.09.006

294

[2] N. Rajendra Prasad, A. Karthikeyan, S. Karthikeyan, B.V. Reddy, Inhibitory effect of caffeic acid

295

on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line.

296

Mol Cell Biochem. 349 (2011) 11-19. doi:10.1007/s11010-010-0655-7

297

[3] K. Ikeda, K. Tsujimoto, M. Uozaki, M. Nishide, Y. Suzuki, A.H. Koyama, H. Yamasaki, Inhibition

298

of multiplication of herpes simplex virus by caffeic acid. Int J Mol Med. 28 (2011) 595-598.

299

doi:10.3892/ijmm.2011.739

300

[4] H. Takeda, M. Tsuji, M. Inazu, T. Egashira, T. Matsumiya, Rosmarinic acid and caffeic acid

301

produce antidepressive-like effect in the forced swimming test in mice. Eur J Pharmacol. 449

302

(2002) 261-267. doi: 10.1016/s0014-2999(02)02037-x.

303

[5] Z.L. Fowler, M.A. Koffas, Biosynthesis and biotechnological production of flavanones: current

304

state and perspectives. Appl Microbiol Biotechnol. 83 (2009) 799-808. doi:10.1007/s00253-009-

305

2039-z

306

[6] E. Leonard, Y. Yan, Z.L. Fowler, Z. Li, C.G. Lim, K.H. Lim, M.A. Koffas, Strain improvement of

11

307

recombinant Escherichia coli for efficient production of plant flavonoids. Mol Pharm. 5 (2008)

308

257-265. doi: 10.1021/mp7001472.

309

310

311

[7] S. Horinouchi, Combinatorial biosynthesis of plant medicinal polyketides by microorganisms. Curr

Opin Chem Biol. 13 (2009) 197-204. doi:10.1016/j.cbpa.2009.02.004

[8] J.C. Ye, M.W. Hsiao, C.H. Hsieh, W.C. Wu, Y.C. Hung, W.C. Chang. Analysis of caffeic acid

312

extraction from Ocimum gratissimum Linn. by high performance liquid chromatography and its

313

effects on a cervical cancer cell line. Taiwan J Obstet Gynecol. 49 (2010) 266-271.

314

doi:10.1016/S1028-4559(10)60059-9

315

[9] M. Cao, M. Gao, M. Suástegui, Y. Mei, Z. Shao, Building microbial factories for the production of

316

aromatic amino acid pathway derivatives: From commodity chemicals to plant-sourced natural

317

products. Metab Eng. 58 (2020) 94-132. doi:10.1016/j.ymben.2019.08.008

318

[10] Y.H. Kim, T. Kwon, H.J. Yang, W. Kim, H. Youn, J.Y. Lee, B. Youn, Gene engineering,

319

purification, crystallization and preliminary X-ray diffraction of cytochrome P450 p-coumarate-3-

320

hydroxylase (C3H), the Arabidopsis membrane protein. Protein Expr Purif. 79 (2011) 149-155.

321

doi: 10.1016/j.pep.2011.04.013.

322

323

324

[11] Y. Lin, Y. Yan, Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase

complex. Microb Cell Fact. 11 (2012) 42. doi: 10.1186/1475-2859-11-42.

[12 ]T. Furuya, Y. Arai, K. Kino, Biotechnological production of caffeic acid by bacterial cytochrome

325

P450 CYP199A2. Appl Environ Microbiol. 78 (2012), 6087–6094. doi.org/10.1128/AEM.01103-

326

12

327

[13] K. Haslinger, K.L.J. Prather, Heterologous caffeic acid biosynthesis in Escherichia coli is affected

328

by choice of tyrosine ammonia lyase and redox partners for bacterial Cytochrome P450. Microb

329

Cell Fact 19, (2020) 26. doi.org/10.1186/s12934-020-01300-9

330

[14] J. L. Rodrigues, R.G. Araújo, K.L. Prather, L.D. Kluskens, L.R. Rodrigues, Heterologous

331

production of caffeic acid from tyrosine in Escherichia coli. Enzyme Microb Technol. 71 (2015),

332

36–44. doi.org/10.1016/j.enzmictec.2015.01.001

333

334

[15] O. Choi, C.Z. Wu, S. Y. Kang, J.S. Ahn, T.B. Uhm, Y.S. Hong, Biosynthesis of plant-specific

phenylpropanoids by construction of an artificial biosynthetic pathway in Escherichia coli. J Ind

12

335

336

Microbiol Biotechnol. 38 (2011) 1657-1665. doi:10.1007/s10295-011-0954-3

[16] H. Zhang, G. Stephanopoulos. Engineering E. coli for caffeic acid biosynthesis from renewable

337

sugars. Applied microbiology and biotechnology, 97, (2013), 3333–3341.

338

doi.org/10.1007/s00253-012-4544-8

339

[17] J. Wang, M. Mahajani, S.L. Jackson, Y. Yang, M. Chen, E.M. Ferreira, Y. Lin, Y. Yan,

340

Engineering a bacterial platform for total biosynthesis of caffeic acid derived phenethyl esters and

341

amides. Metab Eng. 44 (2017) 89-99. doi:10.1016/j.ymben.2017.09.011

342

[18] Q. Huang, Y. Lin, Y. Yan, Caffeic acid production enhancement by engineering a phenylalanine

343

over-producing Escherichia coli strain. Biotechnol Bioeng. 110 (2013) 3188-3196.

344

doi:10.1002/bit.24988

345

[19] T. Furuya, K. Kino K, Catalytic activity of the two-component flavin-dependent monooxygenase

346

from Pseudomonas aeruginosa toward cinnamic acid derivatives. Appl Microbiol Biotechnol. 98

347

(2014) 1145-1154. doi:10.1007/s00253-013-4958-y

348

[20] H. Kawaguchi, Y. Katsuyama, D. Danyao, P. Kahar, S. Nakamura-Tsuruta, H. Teramura, K.

349

Wakai, K. Yoshihara, H. Minami, C. Ogino, Y. Ohnishi, A. Kondo, Caffeic acid production by

350

simultaneous saccharification and fermentation of kraft pulp using recombinant Escherichia coli.

351

Appl Microbiol Biotechnol. 101 (2017) 5279-5290. doi: 10.1007/s00253-017-8270-0.

352

[21] A. Sachan, S. Ghosh, S. K. Sen, A. Mitra, Co-production of caffeic acid and p-hydroxybenzoic

353

acid from p-coumaric acid by Streptomyces caeruleus MTCC 6638. Appl Microbiol Biotechnol.

354

71 (2006) 720-727. doi:10.1007/s00253-005-0197-1

355

[22] J.A. Jones, V.R. Vernacchio, S.M. Collins, A.N. Shirke, Y. Xiu, J.A. Englaender, B.F. Cress, C.C.

356

McCutcheon, R.J. Linhardt, R.A. Gross, M.A.G. Koffas, Complete biosynthesis of anthocyanins

357

using E. coli polycultures. mBio. 8 (2017) e00621-17. doi: 10.1128/mBio.00621-17.

358

[23] L. Wang, N. Li, S. Yu, J. Zhou, Enhancing caffeic acid production in Escherichia coli by

359

engineering the biosynthesis pathway and transporter. Bioresour Technol. 368(2023) 128320. doi:

360

10.1016/j.biortech.2022.128320.

361

362

[24] P. Zhou, C. Yue, B. Shen, Y. Du, N. Xu, L. Ye, Metabolic engineering of Saccharomyces

cerevisiae for enhanced production of caffeic acid. Appl Microbiol Biotechnol. 105 (2021) 580913

363

364

5819. doi:10.1007/s00253-021-11445-1

[25] R. Chen, J. Gao, W. Yu, X. Chen, X. Zhai, Y. Chen, L. Zhang, Y.J. Zhou, Engineering cofactor

365

supply and recycling to drive phenolic acid biosynthesis in yeast. Nat Chem Biol. 18 (2022) 520-

366

529. doi: 10.1038/s41589-022-01014-6.

367

[26] S. Noda, T. Shirai, S. Oyama, A. Kondo, Metabolic design of a platform Escherichia coli strain

368

producing various chorismate derivatives. Metab Eng. 33 (2016) 119-129.

369

doi:10.1016/j.ymben.2015.11.007

370

371

372

[27] S. Noda, A. Kondo, Recent advances in microbial production of aromatic chemicals and

derivatives. Trends Biotechnol. 35 (2017) 785-796. doi:10.1016/j.tibtech.2017.05.006

[28] T. Tanaka, H. Kawabata, C. Ogino, A. Kondo, Creation of a cellooligosaccharide-assimilating

373

Escherichia coli strain by displaying active beta-glucosidase on the cell surface via a novel

374

anchor protein. Appl Environ Microbiol. 77 (2011) 6265-6270. doi:10.1128/AEM.00459-11

375

[29] Y. Jiang, B. Chen, C. Duan, B. Sun, J. Yang, S. Yang, Multigene editing in the Escherichia coli

376

genome via the CRISPR-Cas9 system Appl Environ Microbiol. 81 (2015) 2506-2514.

377

doi:10.1128/AEM.04023-14

378

[30] R. Fujiwara, S. Noda, T. Tanaka, A. Kondo, Metabolic engineering of Escherichia coli for

379

shikimate pathway derivative production from glucose-xylose co-substrate, Nat Commun. 11

380

(2020) 279. doi:10.1038/s41467-019-14024-1

381

[31] R., Fujiwara, M. Nakano, Y. Hirata, C. Otomo, D. Nonaka, S. Kawada, H. Nakazawa, M. Umetsu,

382

T. Shirai, S. Noda, T. Tanaka, A. Kondo. G6P-capturing molecules in the periplasm of

383

Escherichia coli accelerate the shikimate pathway. Metab Eng. 72 (2022) 68-81. doi:

384

10.1016/j.ymben.2022.03.002.

385

[32] K.T. Heo, B. Lee, S. Son, J.S. Ahn, J.H. Jang, Y.S. Hong, Production of bioactive 3'-

386

hydroxystilbene compounds using the flavin-dependent monooxygenase Sam5. J Microbiol

387

Biotechnol. 28 (2018) 1105-1111. doi:10.4014/jmb.1804.04007

388

[33] S. Chakraborty, M. Ortiz-Maldonado, B. Entsch, D.P. Ballou, Studies on the mechanism of p-

389

hydroxyphenylacetate 3-hydroxylase from Pseudomonas aeruginosa: a system composed of a

390

small flavin reductase and a large flavin-dependent oxygenase. Biochemistry. 49 (2010) 372-385.

14

391

392

doi:10.1021/bi901454u

[34] G.A. Sprenger, From scratch to value: engineering Escherichia coli wild type cells to the

393

production of L-phenylalanine and other fine chemicals derived from chorismate. Appl Microbiol

394

Biotechnol. 75(2007) 739-749. doi:10.1007/s00253-007-0931-y

395

[35] Y.F. Yao, C.S. Wang, J. Qiao, G.R. Zhao, Metabolic engineering of Escherichia coli for

396

production of salvianic acid A via an artificial biosynthetic pathway. Metab Eng. 19 (2013) 79-87.

397

doi:10.1016/j.ymben.2013.06.001

398

[36] M. Weiner, C. Albermann, K. Gottlieb, G.A. Sprenger, D. Weuster-Botz, Fed-batch production of

399

L-phenylalanine

from glycerol and ammonia with recombinant Escherichia coli. Biochem Eng J.

400

83 (2014) 62–69.doi 10.1016/j.bej.2013.12.001.

401

402

15

403

Figures

404

405

Figure 1. Metabolic engineering of caffeic acid producing E. coli. The blue X indicates disruption of

406

the ptsH, ptsI, trpE and pheA genes. Red or orange shows genes involved in caffeic acid synthesis

407

overexpressed by plasmid or genomic integration. G6P, glucose 6-phosphate; PEP,

408

phosphoenolpyruvate; E4P, erythrose 4-phosphate; DAHP, 3-deoxy-d-arabinoheptulosonic acid 7-

409

phosphate; PP pathway, pentose–phosphate pathway; SHK pathway, shikimate pathway; RgTAL,

410

tyrosine ammonia-lyase from Rhodotorula glutinis; SeC3H, p-coumaric acid 3-hydroxylase from

411

Saccharothrix espanaensis; PaHpaBC, hydroxylase complexes 4HPA3H from Pseudomonas

412

aeruginosa; tyrAfbr, feedback-resistant chorismate mutase/prephenate dehydrogenase; galP, d-

413

galactose transporter; glk, glucokinase; ptsH, phosphocarrier protein HPr; ptsI, phosphoenolpyruvate-

414

protein phosphotransferase; pykF, pyruvate kinaseⅠ; pykA, pyruvate kinaseⅡ; tktA, transketolase;

415

aroGfbr, feedback-resistant 3-deoxy-7-phosphoheptulonate synthase; trpE, anthranilate synthase

416

component I; pheA, chorismate mutase/prephenate dehydratase.

417

16

0.5

Caffeic acid [g/L]

0.4

0.3

0.2

0.1

pZE12-RS pTrcHisB-RS

PHLA-RS

pSAK-RS

418

419

Figure 2. Caffeic acid production after 48 h of cultivation in M9Y medium containing 0.5 g/L L-

420

tyrosine and 20 g/L glucose using the strains harboring plasmid pZE12-RS, pTrcHisB-RS, pHLA-RS,

421

or pSAK-RS. The data shown are as the means and standard deviations of three independent

422

experiments.

2.0

p-Coumaric acid

Caffeic acid

Caffeic acid [g/L]

1.5

1.0

0.5

CA0/RS

CA1

CA2

CA3

423

424

Figure 3. Caffeic acid production after 48 h of cultivation in M9Y medium containing 20 g/L glucose

425

using strains CA1, CA2, and CA3. The data shown are as the means and standard deviations of three

426

independent experiments

427

17

428

429

Figure 4. Caffeic acid production after 48 h of cultivation in M9Y medium containing 20 g/L glucose

430

using the strains CA4-CA8. The data shown are as the means and standard deviations of three

431

independent experiments.

4.0

p-Coumaric acid

Caffeic acid

3.5

Caffeic acid [g/L]

3.0

2.5

2.0

1.5

1.0

0.5

CA8

CA9

CA10

CA11

432

433

Figure 5. Caffeic acid production after 48 h of cultivation in M9Y medium containing 20 g/L glucose

434

using the strains CA8-CA11. The data shown are as the means and standard deviations of three

435

independent experiments

436

18

7.0

6.0

OD600 [-] / Glucose [g/L]

40

5.0

30

4.0

3.0

20

2.0

10

1.0

p-Coumaric acid / Caffeic acid [g/L]

50

24

437

48

Time [h]

72

96

438

Figure 6. CA8 culture profiles in a jar fermenter. Blue squares, green triangles, light-brown and dark-

439

brown symbols indicate cell growth, glucose concentration, p-coumaric acid concentration and caffeic

440

acid concentration, respectively. The data shown are as the means and standard deviations of three

441

independent experiments.

442

19

443

Table 1. Strains and plasmids used in this study.

Strains and Plasmids

Strains

Genotype

Reference

NovaBlue

endA1 hsdR17(rK12-mK12+) supE44 thi-1 gyrA96 relA1

Novagen

lac recA1/F [proAB+ laclqZΔM15 Tn10(TetR)]

ATCC31882

L-Phenylalanine-overproducing

strain

ATCC

(aroF aroG tyrR pheA tyrA trpE)

CFT1

ATCC31882ΔptsHI::PA1lacO1-glk-galP

Noda et al

CA0

CFT1ΔpheA

This study

CA0/RS

CFT1ΔtrpEΔpheA/pZE12-RS

This study

CA1

CFT1ΔtrpEΔpheA/pZE12-RS+pSAK-Ptrc-tyrAfbr

This study

CA2

CFT1ΔtrpE::Ptrc-tyrAfbrΔpheA/pZE12-RS

This study

CA3

CFT1ΔtrpE::PA1lacO1-tyrAfbrΔpheA/pZE12-RS

This study

CA4

CFT1ΔtrpE::PA1lacO1-tyrAfbrΔpheA/pZE12-RS+pSAK-BC

This study

CA5

CFT1ΔtrpE::PA1lacO1-tyrAfbrΔpheA::PA1lacO1-

This study

PaHpaB/pZE12-RS

CA6

CFT1ΔtrpE::PA1lacO1-tyrAfbrΔpheA/pZE12-RS+pSAK-B

This study

CA7

CFT1ΔtrpE::PA1lacO1-tyrAfbrΔpheA::PA1lacO1-

This study

PaHpaC/pZE12-RS

CA8

CFT1ΔtrpE::PA1lacO1-tyrAfbrΔpheA/pZE12-RS+pSAK-C

This study

CA9

CFT1ΔtrpE::PA1lacO1-tyrAfbrΔpheA::PA1lacO1-

This study

aroGfbr/pZE12-RS+pSAK-C

CA10

CFT1ΔtrpE::PA1lacO1-tyrAfbrΔpheA::PA1lacO1-tktA/pZE12-

This study

RS+pSAK-C

CA11

CFT1ΔtrpE::PA1lacO1-tyrAfbrΔpheAΔpykAF/pZE12-

This study

RS+pSAK-C

Plasmids

Characteristic

Reference

20

pZE12-MCS

PLlacO1, colE ori, and Ampr

Expressys

pTrcHisB

Ptrc, pBR322 ori, and Ampr

Life

Technologies

pHLA

PHCE, colE1 ori, and Ampr

Tanaka et al.,

2011

pSAK

PA1lacO1, SC101 ori, and Cmr

Noda et al.,

2017

pZE12-RS

pZE12 containing RgTAL and SeC3H

This study

pTrcHisB-RS

pTrcHisB containing RgTAL and SeC3H

This study

pHLA-RS

pHLA containing RgTAL and SeC3H

This study

pSAK-RS

pSAK containing RgTAL and SeC3H

This study

pSAK-Ptrc-tyrAfbr

pSAK-Ptrc containing tyrAfbr

Fujiwara et al.,

2020

pSAK-BC

pSAK containing PaHpaBC

This study

pSAK-B

pSAK containing PaHpaB

This study

pSAK-C

pSAK containing PaHpaC

This study

pSAK-aroGfbr

pSAK containing aroGfbr

This study

pSAK-tktA

pSAK containing tktA

This study

pTargetF

Constitutive expression of sgRNA

Addgene

pCas

Constitutive expression of cas9 and inducible expression

Addgene

of λ RED and sgRNA

pTΔtrpE

Constitutive expression of sgRNA with donor editing

Fujiwara et al.,

template DNA for trpE disruption

2020

Constitutive expression of sgRNA with donor editing

Fujiwara et al.,

template DNA for Ptrc-tyrAfbr into trpE gene loci

2020

pTΔtrpE::PA1lacO1-

Constitutive expression of sgRNA with donor editing

Fujiwara et al.,

tyrAfbr

template DNA for PA1lacO1-tyrAfbr into trpE gene loci

2020

pTΔtrpE::Ptrc-tyrAfbr

21

pTΔpykA

pTΔpykF

pTΔpheA

Constitutive expression of sgRNA with donor editing

Noda et al.,

template DNA for pykA disruption

2016

Constitutive expression of sgRNA with donor editing

Noda et al.,

template DNA for pykF disruption

2016

Constitutive expression of sgRNA with donor editing

This study

template DNA for pheA disruption

pTΔpheA::PA1lacO1-

Constitutive expression of sgRNA with donor editing

PaHpaB

template DNA for PA1lacO1-PaHpaB into pheA gene loci

pTΔpheA::PA1lacO1-

Constitutive expression of sgRNA with donor editing

PaHpaC

template DNA for PA1lacO1-PaHpaC into pheA gene loci

pTΔpheA::PA1lacO1-

Constitutive expression of sgRNA with donor editing

aroGfbr

template DNA for PA1lacO1-aroGfbr into pheA gene loci

pTΔpheA::PA1lacO1-

Constitutive expression of sgRNA with donor editing

tktA

template DNA for PA1lacO1-tktA into pheA gene loci

444

445

Graphical abstract

Glucose

Escherichia coli

G6P

PEP

E4P

SHK

Pathw ay

Chorismic acid

L-Tyrosine

RgTAL

TCA

cycle

446

p-Coumaric acid

PaHpaB

PaHpaC

SeC3H

Caffeic acid

Caffeic acid

22

This study

This study

This study

This study

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る