リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Inducer-free recombinant protein production in Trichoderma reesei: secretory production of endogenous enzymes and heterologous nanobodies using glucose as the sole carbon source」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Inducer-free recombinant protein production in Trichoderma reesei: secretory production of endogenous enzymes and heterologous nanobodies using glucose as the sole carbon source

Arai, Toshiharu Wada, Mayumi Nishiguchi, Hiroki Takimura, Yasushi Ishii, Jun 神戸大学

2023.05.19

概要

Background The filamentous fungus Trichoderma reesei has been used as a host organism for the production of lignocellulosic biomass-degrading enzymes. Although this microorganism has high potential for protein production, it has not yet been widely used for heterologous recombinant protein production. Transcriptional induction of the cellulase genes is essential for high-level protein production in T. reesei; however, glucose represses this transcriptional induction. Therefore, cellulose is commonly used as a carbon source for providing its degraded sugars such as cellobiose, which act as inducers to activate the strong promoters of the major cellulase (cellobiohydrolase 1 and 2 (cbh1 and cbh2) genes. However, replacement of cbh1 and/or cbh2 with a gene encoding the protein of interest (POI) for high productivity and occupancy of recombinant proteins remarkably impairs the ability to release soluble inducers from cellulose, consequently reducing the production of POI. To overcome this challenge, we first used an inducer-free biomass-degrading enzyme expression system, previously developed to produce cellulases and hemicellulases using glucose as the sole carbon source, for recombinant protein production using T. reesei. Results We chose endogenous secretory enzymes and heterologous camelid small antibodies (nanobody) as model proteins. By using the inducer-free strain as a parent, replacement of cbh1 with genes encoding two intrinsic enzymes (aspartic protease and glucoamylase) and three different nanobodies (1ZVH, caplacizumab, and ozoralizumab) resulted in their high secretory productions using glucose medium without inducers such as cellulose. Based on signal sequences (carrier polypeptides) and protease inhibitors, additional replacement of cbh2 with the nanobody gene increased the percentage of POI to about 20% of total secreted proteins in T. reesei. This allowed the production of caplacizumab, a bivalent nanobody, to be increased to 9.49-fold (508 mg/L) compared to the initial inducer-free strain. Conclusions In general, whereas the replacement of major cellulase genes leads to extreme decrease in the degradation capacity of cellulose, our inducer-free system enabled it and achieved high secretory production of POI with increased occupancy in glucose medium. This system would be a novel platform for heterologous recombinant protein production in T. reesei.

この論文で使われている画像

参考文献

1. Ramezaniaghdam M, Nahdi ND, Reski R. Recombinant spider silk: promises and bottlenecks. Front Bioeng Biotechnol. 2022;10:1–18.

2. Molfetta M, Morais EG, Barreira L, Bruno GL, Porcelli F, Dugat-Bony E, et al.

Protein sources alternative to meat: state of the art and involvement of

fermentation. Foods. 2022;11:1–30.

3. Aro N, Ercili-Cura D, Andberg M, Silventoinen P, Lille M, Hosia W, et al.

Production of bovine beta-lactoglobulin and hen egg ovalbumin by

Trichoderma reesei using precision fermentation technology and testing

of their techno-functional properties. Food Res Int. 2023;163:112131.

4. Zahavi D, Weiner L. Monoclonal antibodies in cancer therapy. Antibodies.

2020;9:34.

5. Di Nardo F, Chiarello M, Cavalera S, Baggiani C, Anfossi L. Ten years of

lateral flow immunoassay technique applications: trends, challenges and

future perspectives. Sensors. 2021. https://​doi.​org/​10.​3390/​s2115​5185.

6. Traenkle B, Rothbauer U. Under the microscope: single-domain antibodies for live-cell imaging and super-resolution microscopy. Front Immunol.

2017;8:1–8.

7. Gomes AR, Byregowda SM, Veeregowda BM, Balamurugan V. An overview

of heterologous expression host systems for the production of recombinant proteins. Adv Anim Vet Sci. 2016;4:346–56.

8. Whittall DR, Baker KV, Breitling R, Takano E. Host systems for the production of recombinant spider silk. Trends Biotechnol. 2021;39:560–73.

9. Frenzel A, Hust M, Schirrmann T. Expression of recombinant antibodies.

Front Immunol. 2013;4:1–20.

10. Nagorsen D, Kufer P, Baeuerle PA, Bargou R. Blinatumomab: a historical

perspective. Pharmacol Ther. 2012;136:334–42.

11. Holliger P, Hudson PJ. Engineered antibody fragments and the rise of

single domains. Nat Biotechnol. 2005;23:1126–36.

12. Arbabi-Ghahroudi M. Camelid single-domain antibodies: historical

perspective and future outlook. Front Immunol. 2017;8:1–8.

13. de Marco A. Biotechnological applications of recombinant single-domain

antibody fragments. Microb Cell Fact. 2011;10:44.

14. Saerens D, Ghassabeh GH, Muyldermans S. Single-domain antibodies as building blocks for novel therapeutics. Curr Opin Pharmacol.

2008;8:600–8.

15. Muyldermans S, Nanobodies. Natural single-domain antibodies. Annu

Rev Biochem. 2013;82:775–97.

16. Harmsen MM, De Haard HJ. Properties, production, and applications of

camelid single-domain antibody fragments. Appl Microbiol Biotechnol.

2007;77:13–22.

17. de Marco A. Recombinant expression of nanobodies and nanobodyderived immunoreagents. Protein Expr Purif. 2020;172:105645.

18. Demain AL, Vaishnav P. Production of recombinant proteins by microbes

and higher organisms. Biotechnol Adv. 2009;27:297–306.

19. Nevalainen H, Peterson R. Heterologous Expression of proteins in

Trichoderma. Biotechnol Biol Trichoderma. 2014. https://​doi.​org/​10.​1016/​

B978-0-​444-​59576-8.​00007-2.

20. Cherry JR, Fidantsef AL. Directed evolution of industrial enzymes: an

update. Curr Opin Biotechnol. 2003;14:438–43.

21. Fonseca LM, Parreiras LS, Murakami MT. Rational engineering of the

Trichoderma reesei RUT-C30 strain into an industrially relevant platform

for cellulase production. Biotechnol Biofuels. 2020;13:1–15.

22. Noguchi T, Saito H, Nishiyama R, Yoshida N, Matsubayashi T, Teshima Y,

et al. Isolation of a cellulase hyperproducing mutant strain of Trichoderma reesei. Bioresour Technol Reports. 2021;15:100733.

23. Rantasalo A, Vitikainen M, Paasikallio T, Jäntti J, Landowski CP, Mojzita D.

Novel genetic tools that enable highly pure protein production in Trichoderma reesei. Sci Rep. 2019;9:1–12.

24. Zhang J, Wu C, Wang W, Wang W, Wei D. A versatile Trichoderma reesei

expression system for the production of heterologous proteins. Biotechnol Lett. 2018;40:965–72.

Arai et al. Microbial Cell Factories

(2023) 22:103

25. Chai S, Zhu Z, Tian E, Xiao M, Wang Y, Zou G, et al. Building a versatile

protein production platform using engineered Trichoderma reesei. ACS

Synth Biol. 2022;11:486–96.

26. Mandels M, Reese ET. Induction of cellulase in fungi by cellobiose. J

Bacteriol. 1960;79:816–26.

27. Pakula TM, Nygren H, Barth D, Heinonen M, Castillo S, Penttilä M, et al.

Genome wide analysis of protein production load in Trichoderma reesei.

Biotechnol Biofuels BioMed Central. 2016;9:1–26.

28. Zhang Y-HP, Lynd LR. A functionally based model for hydrolysis of cellulose by fungal cellulase. Biotechnol Bioeng. 2006;94:888–98.

29. Zhang X, Li X, Xia L. Heterologous expression of an alkali and thermotolerant lipase from Talaromyces thermophilus in Trichoderma reesei. Appl

Biochem Biotechnol. 2015;176:1722–35.

30. Ma L, Zhang J, Zou G, Wang C, Zhou Z. Improvement of cellulase

activity in Trichoderma reesei by heterologous expression of a betaglucosidase gene from penicillium decumbens. Enzyme Microb Technol.

2011;49:366–71.

31. Seiboth B, Hakola S, Mach RL, Suominen PL, Kubicek CP. Role of four

major cellulases in triggering of cellulase gene expression by cellulose in

Trichoderma reesei. J Bacteriol. 1997;179:5318–20.

32. Ren M, Wang Y, Liu G, Zuo B, Zhang Y, Wang Y, et al. The effects of deletion

of cellobiohydrolase genes on carbon source-dependent growth and

enzymatic lignocellulose hydrolysis in Trichoderma reesei. J Microbiol.

2020;58:687–95.

33. Adnan M, Zheng W, Islam W, Arif M, Abubakar YS, Wang Z, et al. Carbon

catabolite repression in filamentous fungi. Int J Mol Sci. 2018;19:1–23.

34. Arai T, Ichinose S, Shibata N, Kakeshita H, Kodama H, Igarashi K, et al.

Inducer-free cellulase production system based on the constitutive

expression of mutated XYR1 and ACE3 in the industrial fungus Trichoderma reesei. Sci Rep. 2022;12:1–14.

35. Nakazawa H, Kawai T, Ida N, Shida Y, Shioya K, Kobayashi Y, et al. A high performance Trichoderma reesei strain that reveals the importance of xylanase

III in cellulosic biomass conversion. Enzyme Microb Technol. 2016;82:89–95.

36. Landowski CP, Huuskonen A, Wahl R, Westerholm-Parvinen A, Kanerva A,

Hänninen AL, et al. Enabling low cost biopharmaceuticals: a systematic

approach to delete proteases from a well-known protein production host

trichoderma reesei. PLoS ONE. 2015;10:1–28.

37. Häkkinen M, Arvas M, Oja M, Aro N, Penttilä M, Saloheimo M, et al. Reannotation of the CAZy genes of Trichoderma reesei and transcription in

the presence of lignocellulosic substrates. Microb Cell Fact. 2012;11:1–26.

38. Koide A, Tereshko V, Uysal S, Margalef K, Kossiakoff AA, Koide S. Exploring

the capacity of minimalist protein interfaces: interface energetics and

affinity maturation to picomolar KD of a single- domain antibody with a

flat paratope. J Mol Biol. 2007;373:941–53.

39. Rouet R, Dudgeon K, Christie M, Langley D, Christ D. Fully human VH

single domains that rival the stability and cleft recognition of camelid

antibodies. J Biol Chem. 2015;290:11905–17.

40. Peyvandi F, Scully M, Kremer Hovinga JA, Cataland S, Knöbl P, Wu H, et al.

Caplacizumab for acquired thrombotic thrombocytopenic purpura. N

Engl J Med. 2016;374:511–22.

41. European Medicines. Agency (EMA). Cablivi: assessment report. 2018.

https://​www.​ema.​europa.​eu/​en/​docum​ents/​asses​sment-​report/​cabli​vi-​

epar-​public-​asses​sment-​report_​en.​pdf

42. Ishiwatari-Ogata C, Kyuuma M, Ogata H, Yamakawa M, Iwata K, Ochi M,

et al. Ozoralizumab, a humanized anti-TNFα N

­ ANOBODY® compound,

exhibits efficacy not only at the onset of arthritis in a human TNF Transgenic mouse but also during secondary failure of administration of an

anti-TNFα IgG. Front Immunol. 2022;113:8008.

43. Meng F, Wei D, Wang W. Heterologous protein expression in Trichoderma

reesei using the cbhII promoter. Plasmid. 2013;70:272–6.

44. Paloheimo M, Mäntylä A, Kallio J, Suominen P. High-yield production of a

bacterial xylanase in the filamentous fungus Trichoderma reesei requires

a carrier polypeptide with an intact domain structure. Appl Environ

Microbiol. 2003;69:7073–82.

45. Landowski CP, Mustalahti E, Wahl R, Croute L, Sivasiddarthan D, Parvinen

AW, et al. Enabling low cost biopharmaceuticals: high level interferon alpha – 2b production in Trichoderma reesei. Microb Cell Fact.

2016;15:1–15.

46. Kumaraswamy S, Tobias R. Label-free kinetic analysis of an antibody-antigen interaction using biolayer interferometry. Methods Mol Biol. 2015.

https://​doi.​org/​10.​1007/​978-1-​4939-​2425-7_​10.

Page 16 of 16

47. Aggarwals BB, Kohr WJ, Hass PE, Moffat B, Spencer SA, Henzel WJ, et al.

Human tumor necrosis factor. production, purification, and characterization. J Biol Chem. 1985;260:2345–54.

48. Schirrmann T, Al-halabi L, Dübel S, Hust M. Production systems for recombinant antibodies. Front Biosci. 2008. https://​doi.​org/​10.​2741/​3024.

49. Nyyssönen E, Penttilä M, Harkki A, Saloheimo A, Knowles JKC, Keränen S.

Efficient production of antibody fragments by the filamentous fungus

Trichoderma reesei. Nat Biotechnol. 1993;11:591–5.

50. Zhang J, Li J, Gao L, Waghmare PR, Qu J, Liu G. Expression of a SARSCoV-2 neutralizing nanobody in Trichoderma reesei. Chin J Biotechnol.

2022;38:2250–8.

51. Coller SP, Schoisswohl D, Baron M, Parriche M, Kubicek CP. Role of

endoproteolytic dibasic proprotein processing in maturation of secretory

proteins in Trichoderma reesei. Appl Environ Microbiol. 1998;64:3202–8.

52. Fonseca LM, Parreiras LS, Murakami MT. Rational engineering of the

Trichoderma reesei RUT-C30 strain into an industrially relevant platform

for cellulase production. Biotechnol Biofuels. 2020;13:93.

53. Derntl C, Gudynaite-Savitch L, Calixte S, White T, Mach RL, Mach-Aigner

AR. Mutation of the Xylanase regulator 1 causes a glucose blind hydrolase expressing phenotype in industrially used Trichoderma strains.

Biotechnol Biofuels. 2013;6:62.

54. Ellilä S, Fonseca L, Uchima C, Cota J, Goldman GH, Saloheimo M, Sacon

V, Siika-Aho M. Development of a low-cost cellulase production process

using Trichoderma reesei for brazilian biorefineries. Biotechnol Biofuels.

2017;10:30.

55. Zhang J, Chen Y, Wu C, Liu P, Wang W, Wei D. The transcription factor ACE3 controls cellulase activities and lactose metabolism via two

additional regulators in the fungus Trichoderma reesei. J Biol Chem.

2019;294:18435–50.

56. de Lima EA, Mandelli F, Kolling D, Matsusato Souza J, de Oliveira Filho CA,

Ribeiro da Silva M, et al. Development of an economically competitive

Trichoderma-based platform for enzyme production: bioprocess optimization, pilot plant scale-up, techno-economic analysis and life cycle

assessment. Bioresour Technol. 2022;364:128019.

57. Novy V, Nielsen F, Seiboth B, Nidetzky B. The influence of feedstock

characteristics on enzyme production in Trichoderma reesei: a review on

productivity, gene regulation and secretion profiles. Biotechnol Biofuels.

2019;12:238.

58. Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen P, Lukas J,

Olthof B, Worley M, Sexton D, Dudgeon D. Process design and economics

for biochemical conversion of lignocellulosic biomass to ethanol. Volume

NREL/TP-5100-47764. NREL; 2011. http://​www.​nrel.​gov/​docs/​fy11o​sti/​

47764.​pdf.

59. Kawamori M, Morikawa Y, Takasawa S. Induction and production of

cellulases by L-sorbose in Trichoderma reesei. Appl Microbiol Biotechnol

Microbiol Biotechnol. 1986;24:449–53.

60. Penttilä M, Nevalainen H, Rättö M, Salminen E, Knowles J. A versatile

transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene. 1987;61:155–64.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research ? Choose BMC and benefit from:

• fast, convenient online submission

• thorough peer review by experienced researchers in your field

• rapid publication on acceptance

• support for research data, including large and complex data types

• gold Open Access which fosters wider collaboration and increased citations

• maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る