リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Neural mechanisms of inhibitory control revealed by network analysis of structural/functional MRI data」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Neural mechanisms of inhibitory control revealed by network analysis of structural/functional MRI data

張, 帆 筑波大学 DOI:10.15068/0000055114

2020.07.22

概要

The ability to voluntarily inhibit actions when it has become inappropriate or even dangerous in a certain environment is crucial for human life. Successful behavioral inhibition involves two components: proactive and reactive inhibition. The former is goal-directed, which means people need to withhold and adjust reactions for the upcoming task demands. In contrast, the latter is triggered by the stimulus. Therefore, the planned action must be canceled when a stop signal is detected. Converging evidence suggests that frontal cortical regions and basal ganglia in human brain dedicated to proactive and reactive inhibitory control. However, it is still unclear about the neural mechanisms underlying inhibitory control, and how does the information flow during proactive and reactive inhibition.

The aim of this PHD research is to investigate the brain circuits involved inhibitory control. I conducted two studies and employed one experiment. The aim of first study was to identify the regions involved in stop-signal task, clarify the role of these regions and further examine the causal relationships between these regions in proactive and reactive inhibition. I used a specific contrast to isolate the proactive inhibitory control from the reactive inhibitory control, and the regions showing significant activations were applied to the following dynamic and anatomical analysis. The dynamic causal modeling (DCM) was used in first study for the analysis of effective connectivity between the prior selected set of brain regions. In the second study, I combined the functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) method to examine the relationship between functional and structural interactions in behavioral control task. I defined the white matter tracts of interest via probabilistic tractography and used fractional anisotropy (FA) as an indicator of white matter integrity in the subsequent statistical analysis. The data-driven hierarchical clustering and microstructural correlations were combined to examine whether a specific pattern also exists in white matter tracts.

In the first study, I worked on the fMRI data and found the “longer” pathway DLPFC-caudate-IFG-SMA-STN-M1 and the “shorter” pathway IFG-SMA-STN-M1 involved in proactive and reactive inhibitory control separately. Especially, the effective connectivity from caudate to IFG was modulated by proactive inhibition, while the reactive modulation influenced on the effective connectivity from IFG to SMA.

In the second study, I applied the DTI and probabilistic fiber tractography to examine how the white matter microstructure tracts are related to response inhibition, and how the interaction between these tracts transfer the information in the brain. The combination of data-driven hierarchical clustering and significant correlation of FA revealed the specific clusters in the fronto-basal ganglia circuits, and the certain pairs of white matter tracts with significant correlations predicted the effective pathways between DLPFC-caudate/ caudate-IFG/ IFG-SMA/ SMA-STN neural circuits for behavioral control. The results supported the previous result from the first study that focused on fMRI data analysis and examined the relationship between white matter microstructure and functional connectivity.

Taken together, the studies showed that 1) the indirect DLPFC-caudate-IFG- SMA-STN-M1 pathway is involved in the implement of proactive modulation, while the hyperdirect pathway that bypasses the striatum contributes to the reactive modulation. Especially, the effective connection from caudate to IFG was modulated by proactive inhibition, while reactive modulation acted on the effective connection from IFG to SMA. The result of dynamic causal modelling revealed that the function of IFG is more related to attention control in response inhibition, 2) the further investigation using diffusion tensor imaging (DTI) and probabilistic fiber tractography also provided the evidences in micro-structural level for the effective connectivity between DLPFC- caudate-IFG-SMA-STN neural circuits. The combined results from the hierarchical clustering and microstructural correlation of FA predicted the effective pathway which support the previous conclusion in the first study.

この論文で使われている画像

参考文献

Albin, R. L., Young, A. B., and Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366–375.

Alexander, G. E., DeLong, M. R., and Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381.

Almgren, H., Van de Steen, F., Kuhn, S., Razi, A., Friston, K., and Marinazzo, D. (2018). Variability and reliability of effective connectivity within the core default mode network: a multi-site longitudinal spectral DCM study. Neuroimage 183, 757–768.

Arfanakis K, Haughton VM, Carew JD, et al. Diffusion tensor MR imaging in diffuse axonal injury. AJNR Am J Neuroradiol. 2002; 23:794–802.

Aron AR. (2011). From reactive to proactive and selective control: developing a richer model for stopping inappropriate responses. Biol Psychiatry 69: e55–68.

Aron, A. R., Behrens, T. E., Smith, S., Frank, M. J., and Poldrack, R. A. (2007a). Triangulating a cognitive control network using diffusion weighted magnetic resonance imaging (MRI) and functional MRI. J. Neurosci. 27, 3743–3752.

Aron, A. R., Durston, S., Eagle, D. M., Logan, G. D., Stinear, C. M., and Stuphorn, V. (2007b). Converging evidence for a fronto-basal ganglia network for inhibitory control of action and cognition. J. Neurosci. 27, 11860–11864.

Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., and Robbins, T. W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat. Neurosci. 6, 115-116.

Aron, A. R., and Poldrack, R. A. (2006). Cortical and subcortical contributions to stop signal response inhibition: role of the subthalamic nucleus. J. Neurosci. 26, 2424–2433. Aron, A. R., Robbins, T., and Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Brain 127, 1561–1573.

Aron, A. R., Robbins, T., and Poldrack, R. A. (2014). Inhibition and the right inferior frontal cortex: one decade on. Trends Cogn. Sci. 18, 177–185.

Arthurs, O. J. & Boniface, S. (2002). How well do we understand the neural origins of the fMRI BOLD signal? Trends in Neurosciences 25(1):27–31.

Assad, W. F., Rainer, G., and Miller, E. K. (1998). Neural activity in the primate prefrontal cortex during associative learning. Neuron 21, 1399–1407.

Asaad W.F., Rainer G, Miller EK. (2000). Task-specific neural activity in the primate prefrontal cortex. J Neurophysiol 84: 451–459.

Ay H, Buonanno FS, Schaefer PW, et al. Posterior leukoencephalopathy without severe hypertension: utility of diffusion-weighted MRI. Neurology. 1998; 51:1369–76.

Baker, K. B., Lee, J. Y., Mavinkurve, G., Russo, G. S., Walter, B., DeLong, M. R., et al. (2010). Somatotopic organization in the internal segment of the globus pallidus in Parkinson’s disease. Exp. Neurol. 222, 219–225.

Band, G. P. H., van der Molen, M. W., and Logan, G. D. (2003). Horse-race model simulations of the stop-signal procedure. Acta Psychol. 112, 105–142.

Bannon, S., Gonsalvez, C. J., Croft, R. J. & Boyce, P. M. (2002). Response inhibition deficits in obsessive-compulsive disorder. Journal of Psychiatric Research, 110, 165- 174.

Bari, A., and Robbins, T. W. (2013). Inhibition and impulsivity: behavioral and neural basis of response control. Prog. Neurobiol. 108, 44–79.

Barkley, R. A. (1997). Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychological Bulletin, 121, 65- 94.

Basser PJ, Mattiello J, Le Bihan D. Estimation of the effective self-diffusion-tensor from the NMR spin echo. J Magn Reson B 1994; 103:247–54.

Basser, P.J., Pierpaoli, C., (1996). Microstructural and physiological features of tissues elucidated by quantitative diffusion tensor MRI. J. Magn. Reson. B 111, 209-219.

Basser, P., & Pierpaoli, C. (1996). Microstructural features measured using diffusion tensor imaging. Journal of Magnetic Resonance. Series B, 111(3), 209-219.

Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A., (2000). In vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44(4), 625-632.

Behrens, T.E., Johansen-Berg, H., Woolrich, M. W., Smith, S. M., Wheeler-Kingshott, C. A., Boulby, P. A. et al. (2003) Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat. Neurosci., 6, 750-757.

Benoit, R. G., and Anderson, M. C. (2012). Opposing mechanisms support the voluntary forgetting of unwanted memories. Neuron 76, 450–460.

Braver TS, Gray JR, Burgess G.C. (2007). Explaining the many varieties of working memory variation: dual mechanisms of cognitive control. In Variation in working memory (ed. Conway A, et al.), pp. 76–106. Oxford University Press, Oxford.

Brett, M., Johnsrude, I. S., and Owen, A. M. (2002). The problem of functional localization in the human brain. Nat. Rev. Neurosci. 3, 243–249.

Brunberg J, Chenevert T, McKeever P, et al. In vivo MR determination of water diffusion coefficients and diffusion anisotropy: correlation with structural alteration in gliomas of the cerebral hemispheres. AJNR Am J Neuroradiol. 1995; 16:361–71.

Bryden, D. W., Burton, A. C., Kashtelyan, V., Barnett, B. R., and Roesch, M. R. (2012). Response inhibition signals and miscoding of direction in dorsomedial striatum. Front. Integr. Neurosci. 6:69.

Bunge, S. A., Dudukovic, N. M., Thomason, M. E., Vaidya, C. J., and Gabrieli, J. D. (2002). Immature frontal lobe contributions to cognitive control in children: evidence from fMRI. Neuron 33, 301–311.

Cai, Y., Li, S., Liu, J., Li, D., Feng, Z., Wang, Q., et al. (2016). The role of the frontal and parietal cortex in proactive and reactive inhibitory control: a transcranial direct current stimulation study. J. Cogn. Neurosci. 28, 177–186.

Cai, W., Oldenkamp, C., and Aron, A. R. (2011). A proactive mechanism for selective suppression of response tendencies. J. Neurosci. 31, 5965–5969.

Casey, B., Epstein, J., Buhle, J., Liston, C., Davidson, M., Tonev, S., et al (2007) Frontostriatal connectivity and its role in cognitive control in parent-child dyads with ADHD. Am. J. Psychiatry 164, 1729-1736.

Chambers, C. D., Bellgrove, M. A., Stokes, M. G., and Henderson, T. R. (2006). Executive “brake failure” following deactivation of human frontal lobe. J. Cogn. Neurosci. 18, 444–455.

Chambers, C. D., Garavan, H., and Bellgrove, M. A. (2009). Insights into the neural basis of response inhibition from cognitive and clinical neuroscience. Neurosci. Biobehav. Rev. 33, 631–646.

Chevalier, N., Kurth, S., Doucette, M.R., Wiseheart, M., Deoni, SCL., Dean, D.C., O’Muircheartaigh, J., Blackwell, KA., Munakata, Y., LeBourgeois, MK., (2015) Myelination Is Associated with Processing Speed in Early Childhood: Preliminary Insights. PLoS ONE 10: e0139897.

Chevalier N, Kurth S, Doucette MR, Wiseheart M, Deoni SCL, Dean DC, O’Muircheartaigh J, Blackwell KA, Munakata Y, LeBourgeois MK (2015) Myelination Is Associated with Processing Speed in Early Childhood: Preliminary Insights Huang H, ed. PLOS One 10: e0139897.

Chikazoe, J. (2010). Localizing performance of go/no-go tasks to prefrontal cortical subregions. Curr. Opin. Psychiatry 23, 267–272.

Chikazoe, J., Jimura, K., Asari, T., Yamashita, K., Morimoto, H., Hirose, S., et al. (2009a). Functional dissociation in right inferior frontal cortex during performance of a go/no-go task. Cereb. Cortex 19, 146–152.

Chikazoe, J., Jimura, K., Hirose, S., Yamashita, K., Miyashita, Y., and Konishi, S. (2009b). Preparation to inhibit a response complements response inhibition during performance of a stop-signal task. J. Neurosci. 29, 15870–15877.

Chien D, Kwong KK, Gress DR, et al. MR diffusion imaging of cerebral infarction in humans. AJNR Am J Neuroradiol 1992; 13:1097–102, discussion 1103–05.

Chikazoe, J., Jimura, K., Hirose, S., Yamashita, K., Miyashita, Y., and Konishi, S. (2009b). Preparation to inhibit a response complements response inhibition during performance of a stop-signal task. J. Neurosci. 29, 15870–15877.

Chikazoe, J. (2010). Localizing performance of go/no-go tasks to prefrontal cortical subregions. Curr. Opin. Psychiatry 23, 267–272.

Chopra, S., Shaw, M., Shaw, T., Sachdev, PS., Anstey, KJ., Cherbuin, N., (2018). More highly myelinated white matter tracts are associated with faster processing speed in healthy adults. NeuroImage 171: 332-340.

Cohen, J. D., Barch, D. M., Carter, C., and Servan-Schreiber, D. (1999). Context- processing deficits in schizophrenia: converging evidence from three theoretically motivated cognitive tasks. J. Abnorm. Phychol. 108, 120–133.

Conturo, T.E., Lori, N.F., Cull, T.S., Akbudak, E., Snyder, A.Z., Shimony, J.S., McKinstry, R.C., Burton, H., Raichle, M.E. (1999) Tracking neuronal fiber pathways in the living human brain. Proc. Natl. Acad. Sci. U.S.A. 96(18), 10422-10427.

Corbetta, M., and Shulman, G. L. (2002). Control of goal-directed and stimulus driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215.

Coxon, J. P., Stinear, C. M., and Byblow, W. D. (2006). Intracortical inhibition during volitional inhibition of prepared action. J. Neurophysiol. 95, 3371–3383.

Criaud, M., Wardak, C., Ben Hamed, S., Ballanger, B., and Boulinguez, P. (2012). Proactive inhibitory control of response as the default state of executive control. Front. Psychol. 3:59.

Cunillera, T., Fuentemilla, L., Brignani, D., Cucurell, D., and Miniussi, C. (2014). A simultaneous modulation of reactive and proactive inhibition processes by anodal tDCS on the right inferior frontal cortex. PLoS One 9: e113537.

Daunizeau, J., David, O., and Stephan, K. E. (2011). Dynamic causal modelling: a critical review of the biophysical and statistical foundations. Neuroimage 58, 312–322.

DeLong, M. R. (1990). Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 13, 281–285.

D.J. Werring, C.A. Clark, G.J. Parker, D.H. Miller, A.J. Thompson, G.J. Barker. (1999) A direct demonstration of both structure and function in the visual system: combining diffusion tensor imaging with functional magnetic resonance imaging, Neuroimage 9, 352-361.

Dunovan, K., Lynch, B., Molesworth, T., and Verstynen, T. (2015). Competing basal ganglia pathways determine the difference between stopping and deciding not to go. Elife 4: e08723.

Eagle, D. M., Bari, A., and Robbins, T. W. (2008). The neuropsychopharmacology of action inhibition: cross species translation of the stop-signal and go/no-go tasks. Psychopharmacology 199, 439–456.

Eagle, D.M., Baunez, C., Hutcheson, D.M., Lehmann, O., Shah, A.P., Robbins, T.W., 2008. Stop-signal reaction-time task performance: role of prefrontal cortex and subthalamic nucleus. Cereb. Cortex 18, 178-188.

Ebisu T, Naruse S, Horikawa Y, et al. Discrimination between different types of white matter edema with diffusion-weighted MR imaging. J Magn Reson Imaging 1993; 3:863–68.

Ebisu T, Tanaka C, Umeda M, et al. Discrimination of brain abscess from necrotic or cystic tumors by diffusion-weighted echo planar imaging. Magn Reson Imaging 1996; 14:1113–16.

Erika-Florence, M., Leech, R., and Hampshire, A. (2014). A functional network perspective on response inhibition and attentional control. Nat. Commun. 5:4073.

Felleman, D., Van Essen, D.C., 1991. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47.

Fields, RD (2008). White matter in learning, cognition and psychiatric disorders. Trends Neurosci 31: 361-370

Ford, A., McGregor, K.M., Case, K., et al. (2010) Structural connectivity of Broca’s area and medial front cortex. Neuroimage 52: 1230-7.

Forstmann, B. U., Keuken, M. C., Jahfari, S., Bazin, P. L., Neumann, J., Schaafer, A., et al. (2012). Cortico-subthalamic white matter tract strength predicts interindividual efficacy in stopping a motor response. Neuroimage 60, 370–375.

Frank, M. J., Samanta, J., Moustafa, A. A., and Sherman, S. J. (2007). Hold your horses: impulsivity, deep brain stimulation and medication in parkinsonism. Science 318, 1309–1312.

Friston, K. J., Harrison, L., Penny, W. (2003) Dynamic causal modelling. NeuroImage 19: 1273-1302.

Friston , K. et al.(2017). Dynamic causal modelling revisited. Neuroimage Published online February 17,2017.

Gonzalez RG, Schaefer PW, Buonanno FS, et al. Diffusion-weighted MR imaging: diagnostic accuracy in patients imaged within 6 hours of stroke symptom onset. Radiology 1999; 210:155–62.

Gossl, C., Fahrmeir, L., Putz, B., Auer, L.M., Auer, D.P., (2002) Fiber tracking from DTI using linear state space models: detectablity of the pyramidal tract. Neuroimage 16(2), 378-388.

Haber, S.N., Fudge, J.L., McFarland, N.R., (2000). Striatonigrostriatal pathways in primates from an ascending spiral from the shell to the dorsolateral striatum. J. Neurosci. 20, 2369-2382.

Hamani, C., Saint-Cyr, J. A., Fraser, J., Kaplitt, M., and Lozano, A. M. (2004). The subthalamic nucleus in the context of movement disorders. Brain 127, 4–20.

Hampshire, A., Chamberlain, S. R., Monti, M. M., Duncan, J., and Owen, A. M. (2010). The role of the right inferior frontal gyrus: inhibition and attentional control. Neuroimage 50, 1313–1319.

Hampshire, A. (2015). Putting the brakes on inhibitory models of frontal lobe function. Neuroimage 113, 340–355.

Hardman, C., Henderson, J. M., Finkelstein, D. I., Horne, M. K., Paxinos, G., and Halliday, G. M. (2002). Comparison of the basal ganglia in rats, marmosets, macaques, baboons and humans: volume and neuronal number for the output, internal relay and striatal modulating nuclei. J. Comp. Neurol. 445, 238–255.

Harnishfeger, K. K. & Björklund, D. F. (1994). A developmental perspective on individual differences in inhibition. Learning and Individual Differences, 6, 331-355 Hazrati, L. N., and Parent, A. (1992). The striatopallidal projection displays a high degree of anatomical specificity in the primate. Brain Res. 592, 213–227.

Hergan K, Schaefer PW, Sorensen AG, et al. Diffusion-weighted MRI in diffuse axonal injury of the brain. Eur Radiol 2002; 12:2536–41.

Hikosaka, O., and Isoda, M. (2010). Switching from automatic to controlled behavior: cortico-basal ganglia mechanisms. Trends Cogn. Sci. 14, 154–161.

Hilgetag, C.C., O'Neill, M.A., Young, M.P., 2000. Hierarchical organization of macaque and cat cortical sensory systems explored with a novel network processor. Philos. Trans. R. Soc. B: Biol. Sci. 355, 71–89.

Honey, C.J., Thivierge, J.P., Van Impe, A., Geurts, M., Van Hecke, W., Sunaert, S., Wenderoth, N., Swinnen, S.P. (2012). Can structure predict function in the human brain? Neuroimage 52, 766-776.

Huettel, S. A., Song, A. W. and McCarthy, G. (2008) Functional Magnetic Resonance Imaging. Second Edi. Sinauer Associates.

Huisman TA, Sorensen AG, Hergan K, et al. Diffusion-weighted imaging for the evaluation of diffuse axonal injury in closed head injury.

Jaffard M, Benraiss A, Longcamp M, Velay JL, Boulinguez P. (2007). Cueing method biases in visual detection studies. Brain Res 1179: 106–118.

Jaffard, M., Longcamp, M., Velay, J.-L., Anton, J.-L., Roth, M., Nazarian, B., et al. (2008). Proactive inhibitory control of movement assessed by event-related fMRI. Neuroimage 42, 1196–1206.

Jahfari, S., Stinear, C. M., Claffey, M., Verbruggen, F., and Aron, A. R. (2010). Responding with restraint: what are the neurocognitive mechanisms? J. Cogn. Neurosci. 22, 1479–1492.

Jahfari, S., Verbruggen, F., Frank, M. J., Waldorp, L. J., Colzato, L., Ridderinkhof, K. R., et al. (2012). How preparation changes the need for top-down control of the basal ganglia when inhibiting premature actions. J. Neurosci. 32, 10870–10878.

Jahfari S, Waldorp L, van den Wildenberg WP, Scholte HS, Ridderinkhof KR, Forstmann BU (2011) Effective connectivity reveals important roles for both the hyperdirect (fronto-subthalamic) and the indirect (frontostriatal-pallidal) fronto-basal ganglia pathways during response inhibition. J Neurosci 31:6891–6899.

Kenner, N. M., Mumford, J. A., Hommer, R. E., Skup, M., Leibenluft, E., and Poldrack, R. A. (2010). Inhibitory motor control in response stopping and response switching. J. Neurosci. 30, 8512–8518.

Kim Y, Chang K, Kim H, et al. Brain abscess and necrotic or cystic brain tumor: discrimination with signal intensity on diffusion-weighted MR imaging. AJR Am J Roentgenol 1998; 171:1487–90.

King, A. V., Linke, J., Gass, A., Hennerici, M. G., Tost, H., Poupon, C., & Wessa, M. l. (2012). Microstructure of a three-way anatomical network predicts individual differences in response inhibition: a tractography study. Neuroimage, 59(2), 1949- 1959.

Klein, J.C., Behrens, T.E., Robson, M.D., et al. (2007) Connectivity-based parcellation of human cortex using diffusion MRI: Establishing reproducibility, validity and observer independence in BA 44/45 and SMA/pre-SMA. Neuroimage 34, 204-11.

Klingberg, T., Hedegus, M., Temple, E., Salz, T., Gabrieli, J.D., Moseley, M.E., Poldrack, R.A. (2000) Microstructure of temporo-parietal white matter as a basis for reading ability: evidence from diffusion tensor magnetic resonance imaging. Neuron 25, 493-500.

Kolomies, B.P., Deniau, J.M., Glowinski, J., Thierry, A.M. (2003) Basal ganglia and processing of cortical information: functional interactions between trans-striatal and trans-subthalamic circuits in the substantia nigra pars reticulata. Neuroscience 117: 931- 938.

Kolomies, B.P., Deniau, J.M., Mailly, P., Menetrey, A., Glowinski, J., Thierry, A.M. (2001) Segregation and convergence of information flow through the cortico- subthalamic pathways. J Neurosci 21: 5764-5772.

Knoch, D., Treyer, V., Regard, M., Muri, R.M., Buck, A., Weber, B. (2006) Lateralized and frequency-dependent effects of prefrontal rTMS on regional cerebral blood flow. Neuroimage 31, 641-648.

Krabbe K, Gideon P, Wagn P, et al. MR diffusion imaging of human intracranial tumours. Neuroradiology 1997; 39:483–89.

Kubicki, M., Westin, C. F., Marier, S. E., Mamata, H., Frumin, M., Ersner-Hershfried, H. et al. (2002) Diffusion tensor imaging and its appication to neurophychiatric disorders. Harv. Rev. Psychiatry, 10, 324-336.

Kunishio, K., Haber, S.N., (1994) Primte cingulostriatal projection: limbic striatal versus sensorimotor striatal input. J. Comp. Neurol. 350,337-356.

Lappin, J.S., Eriksen, C.W., (1966). Use of a delayed signal to stop a visual reaction- time response. J. Exp. Psychol. 72, 805–811.

Lehéricy, S., Ducros, M., Van de Moortele, P. F., Francois, C., Thivard, L., Poupon, C., et al. (2004). Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. Ann. Neurol. 55, 522–529.

Leuthardt EC, Wippold FJ 2nd, Oswood MC, et al. Diffusion-weighted MR imaging in the preoperative assessment of brain abscesses. Surg Neurol 2002; 58:395–402.

Liston, C., Watts, R., Tottenham, N., Davidson, M. C., Niogi, S., Ulug, A.M., et al (2006) Frontostriatal microstructure modulates efficient recruitment of cognitive control. Cerebral Cortex 16, 553-560.

Lehericy S, Ducros M, Van de Moortele PF, Francois C, Thivard L, Poupon C, Swindale N, Ugurbil K, Kim DS. (2004). Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. Ann Neurol 55: 522–529.

Lehericy, S., Ducros, M., Krainik, A., et al. (2004) 3-D diffusion tensor axonal tracking shows distinct SMA and pre-SMA projections to the human striatum. Cereb Cortex 14: 1302-9.

Logan, G. D., and Cowan, W. B. (1984). On the ability to inhibit thought and action: a theory of an act of control. Psychol. Rev. 91, 295–327.

Logan, G.D., Cowan, W.B., Davis, K.A., (1984). On the ability to inhibit simple and choice reaction time responses: a model and a method. J. Exp. Psychol. 10, 276– 291. Logan, G., Schachar, R., and Tannock, R. (1997). Impulsivity and inhibitory control. Psychol. Sci. 8, 60–64.

Majid, D. S., Cai, W., Corey-Bloom, J., and Aron, A. R. (2013). Proactive selective response suppression is implemented via the basal ganglia. J. Neurosci. 33, 13259– 13269.

Mallet, N., Schmidt, R., Leventhal, D., Chen, F., Amer, N., Boraud, T., et al. (2016). Arkypallidal cells send a stop signal to striatum. Neuron 89, 308–316.

Mancini, C., Cardona, F., Baglioni, V., Panunzi, S., Pantano, P., Suppa, A., et al. (2018). Inhibition is impaired in children with obsessive-compulsive symptoms but not in those with tics. Mov. Disord. 33, 950–959.

Mancini, C., Modugno, N., Santilli, M., Pavone, L., Grillea, G., Morace, R., et al. (2019). Unilateral stimulation of subthalamic nucleus does not affect inhibitory control. Front. Neurol. 9:1149.

Mattia, M., Pani, P., Mirabella, G., Costa, S., Del Giudice, P., and Ferraina, S. (2013). Heterogeneous attractor cell assemblies for motor planning in premotor cortex. J. Neurosci. 33, 11155–11168.

Mattia, M., Spadacenta, S., Pavone, L., Quarato, P., Esposito, V., Sparano, A., et al. (2012). Stop-event-related potentials from intracranial electrodes reveal a key role of premotor and motor cortices in stopping ongoing movements. Front. Neuroeng. 5:12.

Maurice, N., Deniau, J.M., Glowinski, J., Thierry, A.M. (1998) Relationships between the prefrontal cortex and the basal ganglia in the rat: physiology of the corticosubthalamic circuits. J Neurosci 18: 9539-9546.

Mallet, N., Schmidt, R., Leventhal, D., Chen, F., Amer, N., Boraud, T., et al. (2016). Arkypallidal cells send a stop signal to striatum. Neuron 89, 308–316.

Marks MP, De Crespigny A, Lentz D, et al. Acute and chronic stroke: navigated spin- echo diffusion-weighted MR imaging. Radiology 1996; 199:403–08.

Maurice N, Deniau JM, Glowinski J, Thierry AM (1998) Relationships between prefrontal cortex and the basal ganglia in the rat: physiology of the cortico subthalamic circuits. J Neurosci 18: 9539-9546.

McLoughlin, G., Albrecht, B., Banaschewski, T., Rothenberger, A., Brandeis, D., Asherson, P. & Kuntsi, J. (2010). Electrophysiological evidence for abnormal preparatory states and inhibitory processing in adult ADHD. Behavioral and Brain Functions, 6, 1-12.

Mink JW. (1996). The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50: 381–425.

Mirabella, G. (2014). Should I stay or should I go? Conceptual underpinnings of goal- directed actions. Front. Syst. Neurosci. 8:206.

Mirabella, G., Fragola, M., Giannini, G., Modugno, N., and Lakens, D. (2017). Inhibitory control is not lateralized in Parkinson’s patients. Neuropsychologia 102, 177– 189.

Mirabella, G., Iaconelli, S., Modugno, N., Giannini, G., Lena, F., and Cantore, G. (2013). Stimulation of subthalamic nuclei restores a near normal planning strategy in Parkinson’s patients. PLoS One 8: e62793.

Mirabella, G., Iaconelli, S., Romanelli, P., Modugno, N., Lena, F., Manfredi, M., et al. (2012a). Deep brain stimulation of subthalamic nuclei affects arm response inhibition in Parkinson’s patients. Cereb. Cortex 22, 1124–1323.

Mirabella, G., Iaconelli, S., Spadacenta, S., Federico, P., and Gallese, V. (2012b). Processing of hand related verbs specifically affects the planning and execution of arm reaching movements. PLoS One 7: e35403.

Mirabella, G., Pani, P., and Ferraina, S. (2008). Context influences on the preparation and execution of reaching movements. Cogn. Neuropsychol. 25, 996–1010.

Mirabella, G., Pani, P., and Ferraina, S. (2011). Neural correlates of cognitive control of reaching movements in the dorsal premotor cortex of rhesus monkeys. J. Neurophysiol. 106, 1454–1466.

Mori S, Kaufmann WE, Pearlson GD, et al. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 1999; 45:265–69. Moseley ME, Cohen Y, Mintorovitch J, et al. Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med 1990; 14:330–46.

Mukherjee, P., McKinstry RC. Reversible posterior leukoencephalopathy syndrome: evaluation with diffusion-tensor MR imaging. Radiology 2001; 219:756–65.

Mukherjee, P., Berman, J. I., Chung, S. W., Hess, C. P., Henry, R. G., (2008) “Diffusion tensor MR imaging and fiber tractography: theoretic underpinnings.,” AJNR. American journal of neuroradiology, vol. 29, no. 4, pp. 632-41.

Nakahara, K., Hayashi, T., Konishi, S., Miyashita, Y., (2002) Functional MRI of macaque monkeys performing a cognitive set-shifting task. Science 295, 1532-1536.

Nambu, A., Tokuno, H., Hamada, I., Kita, H., Imanishi, M., Akazawa, T., et al. (2000). Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J. Neurophysiol. 84, 289–300.

Nambu, A., Tokuno, H., and Takada, M. (2002). Functional significance of the cortico- subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci. Res. 43, 111–117.

Niogi, S.N., Mukherjee, P., Ghajar, J., Johnson, C.E., Kolster, R., Lee, H., Suh, M., Zimmerman, R.D., Manley, G.T., McCandliss, B.D. (2008b) Structural dissociation of attentional control and memory in adults with and without mild traumatic brain injury. Brain 131,3209-3221.

Oishi, K., Zilles, K., Amunts, K., et al. (2008) Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter. Neuroimage 43: 447-57.

Pajevic, S., and Pierpaoli, C. (1999) Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson. Med., 42, 526-540.

Parent A. (1990). Extrinsic connections of the basal ganglia. Trends Neurosci. 13: 254– 258.

Parent A, Hazrati LN. (1995). Functional anatomy of the basal ganglia. I. The cortico- basal ganglia-thalamo-cortical loop. Brain Res Rev 20: 91–127.

Penny, W. D., Stephan, K. E., Mechelli, A., and Friston, K. J. (2004). Comparing dynamic causal models. Neuroimage 22, 1157–1172.

Pierpaoli, C., Jezzard, P., Basser, P.J., Barnett, A., Di Chiro, G. (1996) Diffusion tensor MR imaging of the human brain. Radiology 201, 637-648.

Provenzale JM, Petrella JR, Cruz LCH Jr, et al. Quantitative assessment of diffusion abnormalities in posterior reversible encephalopathy syndrome. AJNR Am J Neuroradiol. 2001; 22:1455–61.

Rae, C. L., Hughes, L. E., Anderson, M. C., and Rowe, J. B. (2015). The prefrontal cortex achieves inhibitory control by facilitating subcortical motor pathway connectivity. J. Neurosci. 35, 786–794.

Ragozzino ME. (2007). The contribution of the medial prefrontal cortex, orbitofrontal cortex, and dorsomedial striatum to behavioral flexibility. Ann N Y Acad Sci 1121: 355–375.

Schwartz R, Mulkern R, Gudbjartsson H, et al. Diffusion-weighted MR imaging in hypertensive encephalopathy: clues to pathogenesis. AJNR Am J Neuroradiol 1998; 19:859–62.

Seidl A. H. (2014), Regulation of conduction time along axons. Neuroscience 276: 126-134.

Servan-Schreiber, D., Cohen, J., and Steingard, S. (1996). Schizophrenic deficits in processing of cortex: a test of a theoretical model. Arch. Gen. Psychiatry 53, 1105– 1112.

Sharp, D.J., Bonnelle, V., de Boissezon, X., Beckmann, C.F., James, S.G., Patel, M.C., Mehta, M.A., (2010). Distinct frontal systems for response inhibition, attentional capture, and error processing. Proc. Natl. Acad. Sci. U. S. A. 107,6106 - 6111.

Simmonds, D. J., Pekar, J. J., and Mostofsky, S. H. (2008). Meta-analysis of go/no-go tasks demonstrating that fMRI activation associated with response inhibition is task dependent. Neuropsychologia 46, 224–232.

Smith JS, Cha S, Mayo MC, et al. Serial diffusion-weighted magnetic resonance imaging in cases of glioma: distinguishing tumor recurrence from postresection injury. J Neurosurg 2005; 103:428–38.

Smittenaar, P., Guitart-Masip, M., Lutti, A., and Dolan, R. J. (2013). Preparing for selective inhibition within frontostriatal loops. J. Neurosci. 33, 18087–18097.

Strafella, A.P., Paus, T., Barrett, J., Dagher, A. (2001) Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J. Neurosci. 21, RC157.

Stroop, J.R. (1935) Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 28, 643–662.

Swann, N. C., Cai, W., Conner, C. R., Pieters, T. A., Claffy, M. P., Georges, J. S., et al. (2012). Roles for the pre-supplementary motor area and the right inferior frontal gyrus in stopping action: electrophysiological responses and functional and structural connectivity. Neuroimage 59, 2860–2870.

Thomson, A.M., Bannister, A.P., 2003. Interlaminar connections in the neocortex. Cereb. Cortex 13, 5–14.

Thomsen C, Henriksen O, Ring P. In vivo measurement of water self-diffusion in the human brain by magnetic resonance imaging. Acta Radiol 1987; 28:353–61.

Tien R, Felseberg G, Friedman H, et al. MR imaging of high-grade cerebral gliomas: value of diffusion-weighted echoplanar pulse sequences. AJR Am J Roentgenol 1994; 162:671–77.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289.

van Belle, J., Vink, M., Durston, S., and Zandbelt, B. B. (2014). Common and unique neural networks for proactive and reactive response inhibition revealed by independent component analysis of functional MRI data. Neuroimage 103, 65–74.

van den Wildenberg, W. P., van Boxtel, G. J., van der Molen, M. W., Bosch, D. A., Speelman, J. D., and Brunia, C. H. (2006). Stimulation of the subthalamic region facilitates the selection and inhibition of motor responses in Parkinson’s disease. J. Cogn. Neurosci. 18, 626–636.

van Rooij, S. J. H., Geuze, E., Kennis, M, Rademaker, A. R. & Vink, M. (2014). Neural Correlates of Inhibition and Contextual Cue Processing Related to Treatment Response in PTSD. Neuropsychopharmacology, 40, 667–675

Verbruggen, F., and Logan, G. D. (2008). Automatic and controlled response inhibition: associative learning in the go/no-go and stop-signal paradigms. J. Exp. Psychol. Gen. 137, 649–672.

Verbruggen, F., and Logan, G. D. (2009). Proactive adjustments of response strategies in the stop-signal paradigm. J. Exp. Psychol. Hum. Percept. Perform. 35, 835–854.

Verbruggen, F., Stevens, T., and Chambers, C. D. (2014). Proactive and reactive stopping when distracted: an attentional account. J. Exp. Psychol. Hum. Percept. Perform. 40, 1295–1300.

Warach S, Chien D, Li W, et al. Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology 1992; 42:1717–23. Erratum in: Neurology 1992; 42:2192.

Wardak, C. (2011). The role of the supplementary motor area in inhibitory control in monkeys and humans. J. Neurosci. 31, 5181–5183.

Watanabe M. (1990). Prefrontal unit activity during associative learning in the monkey. Exp Brain Res 80: 296–309.

Watanabe M. (1992). Frontal units of the monkey coding the associative significance of visual and auditory stimuli. Exp Brain Res 89: 233–247.

Zhang, F., and Iwaki, S. (2019). Common Neural Network for Different Functions: An Investigation of Proactive and Reactive Inhibition. Front. Behav. Neurosci., 13:124.

参考文献をもっと見る