リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Inducing a Conductive Surface Layer on Nb₂O₅ via Argon-Ion Bombardment: Enhanced Electrochemical Performance for Li-Ion Batteries」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Inducing a Conductive Surface Layer on Nb₂O₅ via Argon-Ion Bombardment: Enhanced Electrochemical Performance for Li-Ion Batteries

Zhang, Shaoning Hwang, Jinkwang Sato, Yuta Matsumoto, Kazuhiko Hagiwara, Rika 京都大学 DOI:10.1021/acsaem.2c03515

2023.02.27

概要

Niobium pentoxide (Nb₂O₅) is in the limelight as a negative electrode material for advanced electrical energy storage devices owing to its unique pseudocapacitive behavior. However, its intrinsic poor electronic conductivity restricts its electrochemical performance. In this study, argon-ion bombardment is employed to enhance the interfacial properties of the Nb₂O₅ negative electrode by introducing highly conductive NbOx (1 ≤ x ≤ 2) species on the electrode surface. Detailed analysis by X-ray photoelectron spectroscopy (XPS) and transition electron microscopy (TEM) reveals that introducing the NbOx layer on the surface of Nb2O5 particles. The NbOx surface architecture fosters improvements in the electrochemical performance of the argon-ion bombarded electrode, exhibiting a higher reversible capacity of 211 mAh g⁻¹ than that of pristine electrodes (138 mAh g⁻¹). Electrochemical impedance spectroscopic analysis reveals that introducing the surface NbOx layer promotes charge transfer at the electrode surface and breaks the limitations of charge transfer resistance. The result provides a pathway to enhance the intrinsic shortness of conductivity and to establish surface modification simultaneously via a simple argon-ion bombardment method, thus achieving the improved electrochemical performance of Nb₂O₅.

関連論文

参考文献

(1) Duffner, F.; Kronemeyer, N.; Tübke, J.; Leker, J.; Winter, M.; Schmuch, R. Post-lithium-ion

battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat.

Energy 2021, 6, 123-134.

(2) Weiss, M.; Ruess, R.; Kasnatscheew, J.; Levartovsky, Y.; Levy, N. R.; Minnmann, P.; Stolz,

L.; Waldmann, T.; Wohlfahrt-Mehrens, M.; Aurbach, D.; Winter, M.; Ein-Eli, Y.; Janek, J. Fast

Charging of Lithium-Ion Batteries: A Review of Materials Aspects. Adv. Energy Mater. 2021, 11,

2101126.

(3) Wu, Y.; Wang, W.; Ming, J.; Li, M.; Xie, L.; He, X.; Wang, J.; Liang, S.; Wu, Y. An

Exploration of New Energy Storage System: High Energy Density, High Safety, and Fast Charging

Lithium Ion Battery. Adv. Funct. Mater. 2019, 29, 1805978.

(4) Huang, H.; Niederberger, M. Towards fast-charging technologies in Li+/Na+ storage: from the

perspectives of pseudocapacitive materials and non-aqueous hybrid capacitors. Nanoscale 2019,

11, 19225-19240.

(5) Xia, R.; Overa, S.; Jiao, F. Emerging Electrochemical Processes to Decarbonize the Chemical

Industry. JACS Au 2022, 2, 1054-1070.

(6) Chen, D.; Wang, J.-H.; Chou, T.-F.; Zhao, B.; El-Sayed, M. A.; Liu, M. Unraveling the Nature

of Anomalously Fast Energy Storage in T-Nb2O5. J. Am. Chem. Soc. 2017, 139, 7071-7081.

(7) Griffith, K. J.; Forse, A. C.; Griffin, J. M.; Grey, C. P. High-Rate Intercalation without

Nanostructuring in Metastable Nb2O5 Bronze Phases. J. Am. Chem. Soc. 2016, 138, 8888-8899.

(8) Meng, J.; He, Q.; Xu, L.; Zhang, X.; Liu, F.; Wang, X.; Li, Q.; Xu, X.; Zhang, G.; Niu, C.;

Xiao, Z.; Liu, Z.; Zhu, Z.; Zhao, Y.; Mai, L. Identification of Phase Control of Carbon-Confined

20

Nb2O5 Nanoparticles toward High-Performance Lithium Storage. Adv. Energy Mater. 2019, 9,

1802695.

(9) Cao, D.; Yao, Z.; Liu, J.; Zhang, J.; Li, C. H-Nb2O5 wired by tetragonal tungsten bronze related

domains as high-rate anode for Li-ion batteries. Energy Storage Mater. 2018, 11, 152-160.

(10) Zhang, S.; Hwang, J.; Matsumoto, K.; Hagiwara, R. In Situ Orthorhombic to Amorphous

Phase Transition of Nb2O5 and Its Temperature Effect on Pseudocapacitive Behavior. ACS Appl.

Mater. Interfaces 2022, 14, 19426-19436.

(11) Fichtner, M.; Edström, K.; Ayerbe, E.; Berecibar, M.; Bhowmik, A.; Castelli, I. E.; Clark, S.;

Dominko, R.; Erakca, M.; Franco, A. A.; Grimaud, A.; Horstmann, B.; Latz, A.; Lorrmann, H.;

Meeus, M.; Narayan, R.; Pammer, F.; Ruhland, J.; Stein, H.; Vegge, T.; Weil, M. Rechargeable

Batteries of the Future—The State of the Art from a BATTERY 2030+ Perspective. Adv. Energy

Mater. 2021, 2102904.

(12) Zeng, Y.; Chalise, D.; Lubner, S. D.; Kaur, S.; Prasher, R. S. A review of thermal physics and

management inside lithium-ion batteries for high energy density and fast charging. Energy Storage

Mater. 2021, 41, 264-288.

(13) Liu, Y.; Zhu, Y.; Cui, Y. Challenges and opportunities towards fast-charging battery materials.

Nat. Energy 2019, 4, 540-550.

(14) Li, T.; Nam, G.; Liu, K.; Wang, J.-H.; Zhao, B.; Ding, Y.; Soule, L.; Avdeev, M.; Luo, Z.;

Zhang, W.; Yuan, T.; Jing, P.; Kim, M. G.; Song, Y.; Liu, M. A niobium oxide with a shear

structure and planar defects for high-power lithium ion batteries. Energy Environ. Sci. 2022, 15,

254-264.

(15) Budak, Ö.; Geißler, M.; Becker, D.; Kruth, A.; Quade, A.; Haberkorn, R.; Kickelbick, G.;

Etzold, B. J. M.; Presser, V. Carbide-Derived Niobium Pentoxide with Enhanced Charge Storage

21

Capacity for Use as a Lithium-Ion Battery Electrode. ACS Appl. Energy Mater. 2020, 3, 42754285.

(16) Shen, F.; Sun, Z.; Zhao, L.; Xia, Y.; Shao, Y.; Cai, J.; Li, S.; Lu, C.; Tong, X.; Zhao, Y.; Sun,

J.; Shao, Y. Triggering the phase transition and capacity enhancement of Nb2O5 for fast-charging

lithium-ion storage. J. Mater. Chem. A 2021, 9, 14534-14544.

(17) Yan, X.; Li, T.; Xiong, Y.; Ge, X. Synchronized ion and electron transfer in a blue T-Nb2O5x

with solid-solution-like process for fast and high volumetric charge storage. Energy Storage

Mater. 2021, 36, 213-221.

(18) Xia, R.; Zhao, K.; Kuo, L.-Y.; Zhang, L.; Cunha, D. M.; Wang, Y.; Huang, S.; Zheng, J.;

Boukamp, B.; Kaghazchi, P.; Sun, C.; ten Elshof, J. E.; Huijben, M. Nickel Niobate Anodes for

High Rate Lithium-Ion Batteries. Adv. Energy Mater. 2022, 12, 2102972.

(19) Sun, Y.-G.; Piao, J.-Y.; Hu, L.-L.; Bin, D.-S.; Lin, X.-J.; Duan, S.-Y.; Cao, A.-M.; Wan, L.J. Controlling the Reaction of Nanoparticles for Hollow Metal Oxide Nanostructures. J. Am. Chem.

Soc. 2018, 140, 9070-9073.

(20) Lou, S.; Cheng, X.; Wang, L.; Gao, J.; Li, Q.; Ma, Y.; Gao, Y.; Zuo, P.; Du, C.; Yin, G. Highrate capability of three-dimensionally ordered macroporous T-Nb2O5 through Li+ intercalation

pseudocapacitance. J. Power Sources 2017, 361, 80-86.

(21) Tang, Y.; Yang, L.; Zhu, Y.; Zhang, F.; Zhang, H. Fabrication of a highly stable

Nb2O5@C/CNTs based anolyte for lithium slurry flow batteries. J. Mater. Chem. A 2022, 10, 56205630.

(22) Song, M. Y.; Kim, N. R.; Yoon, H. J.; Cho, S. Y.; Jin, H.-J.; Yun, Y. S. Long-Lasting Nb2O5Based Nanocomposite Materials for Li-Ion Storage. ACS Appl. Mater. Interfaces 2017, 9, 22672274.

22

(23) Song, H.; Fu, J.; Ding, K.; Huang, C.; Wu, K.; Zhang, X.; Gao, B.; Huo, K.; Peng, X.; Chu,

P. K. Flexible Nb2O5 nanowires/graphene film electrode for high-performance hybrid Li-ion

supercapacitors. J. Power Sources 2016, 328, 599-606.

(24) Cheong, J. Y.; Youn, D. Y.; Kim, C.; Jung, J.-W.; Ogata, A. F.; Bae, J. G.; Kim, I.-D. Agcoated one-dimensional orthorhombic Nb2O5 fibers as high performance electrodes for lithium

storage. Electrochim. Acta 2018, 269, 388-396.

(25) Zhao, Y.; Ding, C.; Hao, Y.; Zhai, X.; Wang, C.; Li, Y.; Li, J.; Jin, H. Neat Design for the

Structure of Electrode To Optimize the Lithium-Ion Battery Performance. ACS Appl. Mater.

Interfaces 2018, 10, 27106-27115.

(26) Jiang, Y.; Guo, S.; Li, Y.; Hu, X. Rapid microwave synthesis of carbon-bridged Nb2O5

mesocrystals for high-energy and high-power sodium-ion capacitors. J. Mater. Chem. A 2022, 10,

11470-11476.

(27) Song, Z.; Li, H.; Liu, W.; Zhang, H.; Yan, J.; Tang, Y.; Huang, J.; Zhang, H.; Li, X. Ultrafast

and Stable Li-(De)intercalation in a Large Single Crystal H-Nb2O5 Anode via Optimizing the

Homogeneity of Electron and Ion Transport. Adv. Mater. 2020, 32, 2001001.

(28) Zheng, Y.; Yao, Z.; Shadike, Z.; Lei, M.; Liu, J.; Li, C. Defect-Concentration-Mediated TNb2O5 Anodes for Durable and Fast-Charging Li-Ion Batteries. Adv. Funct. Mater. 2022, 32,

2107060.

(29) Liu, L.; Zhao, H.; Lei, Y. Review on Nanoarchitectured Current Collectors for

Pseudocapacitors. Small Methods 2019, 3, 1800341.

(30) Hao, J.; Zhang, J.; Xia, G.; Liu, Y.; Zheng, Y.; Zhang, W.; Tang, Y.; Pang, W. K.; Guo, Z.

Heterostructure Manipulation via in Situ Localized Phase Transformation for High-Rate and

Highly Durable Lithium Ion Storage. ACS Nano 2018, 12, 10430-10438.

23

(31) Zeng, Y.; Lai, Z.; Han, Y.; Zhang, H.; Xie, S.; Lu, X. Oxygen-Vacancy and Surface

Modulation of Ultrathin Nickel Cobaltite Nanosheets as a High-Energy Cathode for Advanced ZnIon Batteries. Adv. Mater. 2018, 30, 1802396.

(32) Kim, H.-S.; Cook, J. B.; Lin, H.; Ko, Jesse S.; Tolbert, Sarah H.; Ozolins, V.; Dunn, B.

Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nat. Mater.

2017, 16, 454-460.

(33) Roberson, J. A.; Rapp, R. A. Electrical properties of NbO and NbO2. J. Phys. Chem. Solids

1969, 30, 1119-1124.

(34) Adler, D. Electrical and optical properties of transition-metal oxides. Radiation Effects 1970,

4, 123-131.

(35) Hulm, J. K.; Jones, C. K.; Hein, R. A.; Gibson, J. W. Superconductivity in the TiO and NbO

systems. J. Low Temp. Phys. 1972, 7, 291-307.

(36) Weibin, Z.; Weidong, W.; Xueming, W.; Xinlu, C.; Dawei, Y.; Changle, S.; Liping, P.;

Yuying, W.; Li, B. The investigation of NbO2 and Nb2O5 electronic structure by XPS, UPS and

first principles methods. Surf. Interface Anal. 2013, 45, 1206-1210.

(37) Choudhury, T.; Saied, S. O.; Sullivan, J. L.; Abbot, A. M. Reduction of oxides of iron, cobalt,

titanium and niobium by low-energy ion bombardment. J. Phys. D Appl. Phys. 1989, 22, 11851195.

(38) Murti, D. K.; Kelly, R. Studies on Bombardment-Enhanced Conductivity. IV. Surf. Sci. 1975,

47, 282-293.

(39) Karulkar, P. C. Effects of sputtering on the surface composition of niobium oxides. J. Vac.

Sci. Technol. 1981, 18, 169-174.

24

(40) Zhang, J.; He, H.; Tang, Y.; Ji, X.; Wang, H. Advanced Materials Prepared via Metallic

Reduction Reactions for Electrochemical Energy Storage. Small Methods 2020, 4, 2000613.

(41) McGuire, G. E.; Schweitzer, G. K.; Carlson, T. A. Study of Core Electron Binding Energies

in Some Group IIIa, Vb, and VIb Compounds. Inorg. Chem. 1973, 12, 2450-2453.

(42) Jung, K.; Kim, Y.; Park, Y. S.; Jung, W.; Choi, J.; Park, B.; Kim, H.; Kim, W.; Hong, J.; Im,

H. Unipolar Resistive Switching in Insulating Niobium Oxide Film and Probing Electroforming

Induced Metallic Components. J. Appl. Phys. 2011, 109.

(43) Bahl, M. K. ESCA Studies of Some Niobium Compounds. J. Phys. Chem. Solids 1975, 36,

485-491.

(44) Come, J.; Augustyn, V.; Kim, J. W.; Rozier, P.; Taberna, P.-L.; Gogotsi, P.; Long, J. W.;

Dunn, B.; Simon, P. Electrochemical Kinetics of Nanostructured Nb2O5 Electrodes. J.

Electrochem. Soc. 2014, 161, A718.

(45) Hwang, J.; Okada, H.; Haraguchi, R.; Tawa, S.; Matsumoto, K.; Hagiwara, R. Ionic liquid

electrolyte for room to intermediate temperature operating Li metal batteries: Dendrite suppression

and improved performance. J. Power Sources 2020, 453, 227911.

(46) Hwang, J.; Matsumoto, K.; Hagiwara, R. Symmetric Cell Electrochemical Impedance

Spectroscopy of Na2FeP2O7 Positive Electrode Material in Ionic Liquid Electrolytes. J. Phys.

Chem. C 2018, 122, 26857-26864.

(47) Gaberšček, M. Understanding Li-based battery materials via electrochemical impedance

spectroscopy. Nat. Commun. 2021, 12, 6513.

(48) Zhang, Y.; Tang, Q.; Zhang, Y.; Wang, J.; Stimming, U.; Lee, A. A. Identifying degradation

patterns of lithium ion batteries from impedance spectroscopy using machine learning. Nat.

Commun. 2020, 11, 1706.

25

(49) Ogihara, N.; Kawauchi, S.; Okuda, C.; Itou, Y.; Takeuchi, Y.; Ukyo, Y. Theoretical and

Experimental Analysis of Porous Electrodes for Lithium-Ion Batteries by Electrochemical

Impedance Spectroscopy Using a Symmetric Cell. J. Electrochem. Soc. 2012, 159, A1034-A1039.

(50) Sagane, F.; Abe, T.; Iriyama, Y.; Ogumi, Z. Li+ and Na+ transfer through interfaces between

inorganic solid electrolytes and polymer or liquid electrolytes. J. Power Sources 2005, 146, 749752.

(51) Abe, T.; Sagane, F.; Ohtsuka, M.; Iriyama, Y.; Ogumi, Z. Lithium-Ion Transfer at the

Interface Between Lithium-Ion Conductive Ceramic Electrolyte and Liquid Electrolyte-A Key to

Enhancing the Rate Capability of Lithium-Ion Batteries. J. Electrochem. Soc. 2005, 152, A2151.

(52) Kato, K.; Tamura, S. Die Kristallstruktur von T-Nb2O5. Acta Cryst. B 1975, 31, 673-677.

26

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る