リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Vanadium diphosphide as a negative electrode material for sodium secondary batteries」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Vanadium diphosphide as a negative electrode material for sodium secondary batteries

Kaushik, Shubham Matsumoto, Kazuhiko Orikasa, Yuki Katayama, Misaki Inada, Yasuhiro Sato, Yuta Gotoh, Kazuma Ando, Hideka Hagiwara, Rika 京都大学 DOI:10.1016/j.jpowsour.2020.229182

2021.01

概要

The abundance of sodium resources has sparked interest in the development of sodium-ion batteries for large-scale energy storage systems, amplifying the need for high-performance negative electrodes. Although transition metal phosphide electrodes have shown remarkable performance and great versatility for both lithium and sodium batteries, their electrochemical mechanisms in sodium batteries, particularly vanadium phosphides, remain largely elusive. Herein, we delineate the performance of VP₂ as a negative electrode alongside ionic liquids in sodium-ion batteries. The polycrystalline VP₂ is synthesized via one-step high energy ball-milling and characterized using X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy. Electrochemical tests ascertained improved performance at intermediate temperatures, where the initial cycle was conducted at 100 mA g⁻¹ yielded a significantly higher discharge capacity of 243 mAh g⁻¹ at 90°C compared to the limited capacity of 49 mAh g⁻¹ at 25°C. Enhanced rate and cycle performance are also achieved at 90 °C. Electrochemical impedance spectroscopy and scanning electron microscopy further reveal a reduced charge transfer resistance at 90°C and the formation of a uniform and stable solid electrolyte interface (SEI) layer after cycling. X-ray diffraction and nuclear magnetic resonance spectroscopy are used to confirm the conversion-based mechanism forming Na₃P after charging.

この論文で使われている画像

参考文献

[1] V. Khare, S. Nema, P. Baredar, Renew. Sust. Energy Rev., 58 (2016) 23-33.

[2] M. Yekini Suberu, M. Wazir Mustafa, N. Bashir, Renew. Sust. Energy Rev., 35 (2014) 499-514.

[3] J.M. Tarascon, M. Armand, Nature, 414 (2001) 359-367.

[4] M.S. Whittingham, Chem. Rev., 104 (2004) 4271-4302.

[5] Y.J. Lee, H. Yi, W.-J. Kim, K. Kang, D.S. Yun, M.S. Strano, G. Ceder, A.M. Belcher, Science,

324 (2009) 1051-1055.

[6] M. Wentker, M. Greenwood, J. Leker, Energies, 12 (2019) 504.

[7] F. Li, Z. Wei, A. Manthiram, Y. Feng, J. Ma, L. Mai, J. Mater. Chem. A, 7 (2019) 9406-9431.

[8] L.P. Wang, L. Yu, X. Wang, M. Srinivasan, Z.J. Xu, J. Mater. Chem. A, 3 (2015) 9353-9378.

[9] A. Ponrouch, D. Monti, A. Boschin, B. Steen, P. Johansson, M.R. Palacín, J. Mater. Chem. A,

3 (2015) 22-42.

[10] J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Chem. Soc. Rev., 46 (2017) 3529-3614.

[11] M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Adv. Funct. Mater., 23 (2013) 947-958.

[12] B.L. Ellis, L.F. Nazar, Curr. Opin. Solid State Mater. Sci., 16 (2012) 168-177.

[13] N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev., 114 (2014) 11636-11682.

[14] S.-W. Kim, D.-H. Seo, X. Ma, G. Ceder, K. Kang, Adv. Energy Mater., 2 (2012) 710-721.

[15] U.S.G. Survey, Mineral Commodity Summaries 2019, Soda Ash, (2019) 154.

[16] Y. Nozaki, EOS. Trans, 78 (1997) 221.

[17] H. Zhang, Y. Huang, H. Ming, G. Cao, W. Zhang, J. Ming, R. Chen, J. Mater. Chem. A, 8

(2020) 1604-1630.

[18] J. Mao, T. Zhou, Y. Zheng, H. Gao, H.k. Liu, Z. Guo, J. Mater. Chem. A, 6 (2018) 3284-3303.

[19] W. Li, M. Li, K.R. Adair, X. Sun, Y. Yu, J. Mater. Chem. A, 5 (2017) 13882-13906.

20

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

[20] H. Pan, Y.-S. Hu, L. Chen, Energy Environ. Sci., 6 (2013) 2338-2360.

[21] D.A. Stevens, J.R. Dahn, J. Electrochem. Soc., 147 (2000) 1271.

[22] M. Goktas, C. Bolli, E.J. Berg, P. Novák, K. Pollok, F. Langenhorst, M.v. Roeder, O. Lenchuk,

D. Mollenhauer, P. Adelhelm, Adv. Energy Mater., 8 (2018) 1702724.

[23] Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings, C. Wang, Nat.

Commun., 5 (2014) 4033.

[24] B. Xiao, T. Rojo, X. Li, ChemSusChem, 12 (2019) 133-144.

[25] M. Dahbi, M. Kiso, K. Kubota, T. Horiba, T. Chafik, K. Hida, T. Matsuyama, S. Komaba, J.

Mater. Chem. A, 5 (2017) 9917-9928.

[26] A.C.S. Jensen, E. Olsson, H. Au, H. Alptekin, Z. Yang, S. Cottrell, K. Yokoyama, Q. Cai, M.M. Titirici, A.J. Drew, J. Mater. Chem. A, 8 (2020) 743-749.

[27] N. Sun, H. Liu, B. Xu, J. Mater. Chem. A, 3 (2015) 20560-20566.

[28] A. Rudola, K. Saravanan, S. Devaraj, H. Gong, P. Balaya, Chem. Commun., 49 (2013) 74517453.

[29] A. Rudola, N. Sharma, P. Balaya, Electrochem. Commun., 61 (2015) 10-13.

[30] A. Rudola, K. Saravanan, C.W. Mason, P. Balaya, J. Mater. Chem. A, 1 (2013) 2653-2662.

[31] S. Fang, D. Bresser, S. Passerini, Adv. Energy Mater., 10 (2020) 1902485.

[32] D. Deng, M.G. Kim, J.Y. Lee, J. Cho, Energy Environ. Sci., 2 (2009) 818-837.

[33] L. Wu, D. Bresser, D. Buchholz, G.A. Giffin, C.R. Castro, A. Ochel, S. Passerini, Adv. Energy

Mater., 5 (2015) 1401142.

[34] F. Klein, R. Pinedo, P. Hering, A. Polity, J. Janek, P. Adelhelm, J. Phys. Chem. C, 120 (2016)

1400-1414.

[35] Q. Xia, W. Li, Z. Miao, S. Chou, H. Liu, Nano Res., 10 (2017) 4055-4081.

21

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

[36] L. Liu, Q. Li, Z. Wang, J. Yan, Y. Chen, Funct. Mater. Lett., 11 (2018) 1830001.

[37] Z. Li, H. Zhao, J. Mater. Chem. A, 6 (2018) 24013-24030.

[38] Y. Kim, Y. Kim, A. Choi, S. Woo, D. Mok, N.-S. Choi, Y.S. Jung, J.H. Ryu, S.M. Oh, K.T.

Lee, Adv. Mater., 26 (2014) 4139-4144.

[39] S.-O. Kim, A. Manthiram, Chem. Commun., 52 (2016) 4337-4340.

[40] G. Chang, Y. Zhao, L. Dong, D.P. Wilkinson, L. Zhang, Q. Shao, W. Yan, X. Sun, J. Zhang, J.

Mater. Chem. A, 8 (2020) 4996-5048.

[41] Y. Fu, Q. Wei, G. Zhang, S. Sun, Adv. Energy Mater., 8 (2018) 1703058.

[42] C.-M. Park, Y.-U. Kim, H.-J. Sohn, Chem. Mater., 21 (2009) 5566-5568.

[43] Y.-U. Kim, B.W. Cho, H.-J. Sohn, J. Electrochem. Soc., 152 (2005) A1475-A1478.

[44] F. Gillot, M. Ménétrier, E. Bekaert, L. Dupont, M. Morcrette, L. Monconduit, J.M. Tarascon,

J. Power Sources, 172 (2007) 877-885.

[45] K.-H. Kim, J. Choi, S.-H. Hong, Chem. Commun., 55 (2019) 3207-3210.

[46] K.-H. Kim, C.-H. Jung, W.-S. Kim, S.-H. Hong, J. Power Sources, 400 (2018) 204-211.

[47] K. Xu, Chem. Rev., 114 (2014) 11503-11618.

[48] G.G. Eshetu, S. Grugeon, S. Laruelle, S. Boyanov, A. Lecocq, J.-P. Bertrand, G. Marlair, Phys.

Chem. Chem. Phys., 15 (2013) 9145-9155.

[49] K. Matsumoto, Y. Okamoto, T. Nohira, R. Hagiwara, J. Phys. Chem. C, 119 (2015) 76487655.

[50] M. Galiński, A. Lewandowski, I. Stępniak, Electrochim. Acta, 51 (2006) 5567-5580.

[51] I. Osada, H. de Vries, B. Scrosati, S. Passerini, Angew. Chem. Int. Ed., 55 (2016) 500-513.

[52] A. Fernicola, F. Croce, B. Scrosati, T. Watanabe, H. Ohno, J. Power Sources, 174 (2007) 342348.

22

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

[53] D. Monti, E. Jónsson, M.R. Palacín, P. Johansson, J. Power Sources, 245 (2014) 630-636.

[54] D.R. MacFarlane, N. Tachikawa, M. Forsyth, J.M. Pringle, P.C. Howlett, G.D. Elliott, J.H.

Davis, M. Watanabe, P. Simon, C.A. Angell, Energy Environ. Sci., 7 (2014) 232-250.

[55] K. Matsumoto, J. Hwang, S. Kaushik, C.-Y. Chen, R. Hagiwara, Energy Environ. Sci., 12

(2019) 3247-3287.

[56] A. Basile, M. Hilder, F. Makhlooghiazad, C. Pozo-Gonzalo, D.R. MacFarlane, P.C. Howlett,

M. Forsyth, Adv. Energy Mater., 8 (2018) 1703491.

[57] L.G. Chagas, D. Buchholz, L. Wu, B. Vortmann, S. Passerini, J. Power Sources, 247 (2014)

377-383.

[58] N. Wongittharom, T.-C. Lee, C.-H. Wang, Y.-C. Wang, J.-K. Chang, J. Mater. Chem. A, 2

(2014) 5655-5661.

[59] S.A. Mohd Noor, P.C. Howlett, D.R. MacFarlane, M. Forsyth, Electrochim. Acta, 114 (2013)

766-771.

[60] C. Ding, T. Nohira, R. Hagiwara, K. Matsumoto, Y. Okamoto, A. Fukunaga, S. Sakai, K. Nitta,

S. Inazawa, J. Power Sources, 269 (2014) 124-128.

[61] H. Usui, Y. Domi, M. Shimizu, A. Imoto, K. Yamaguchi, H. Sakaguchi, J. Power Sources, 329

(2016) 428-431.

[62] L. Wu, A. Moretti, D. Buchholz, S. Passerini, D. Bresser, Electrochim. Acta, 203 (2016) 109116.

[63] K. Matsumoto, C.Y. Chen, T. Kiko, J. Hwang, T. Hosokawa, T. Nohira, R. Hagiwara, ECS

Trans., 75 (2016) 139-145.

[64] T. Yamamoto, T. Nohira, R. Hagiwara, A. Fukunaga, S. Sakai, K. Nitta, Electrochim. Acta,

193 (2016) 275-283.

23

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

[65] J. Hwang, K. Matsumoto, R. Hagiwara, Adv. Sustainable Syst., 2 (2018) 1700171.

[66] M. Forsyth, H. Yoon, F. Chen, H. Zhu, D.R. MacFarlane, M. Armand, P.C. Howlett, J. Phys.

Chem. C, 120 (2016) 4276-4286.

[67] A. Fukunaga, T. Nohira, R. Hagiwara, K. Numata, E. Itani, S. Sakai, K. Nitta, S. Inazawa, J.

Power Sources, 246 (2014) 387-391.

[68] H. Usui, Y. Domi, K. Fujiwara, M. Shimizu, T. Yamamoto, T. Nohira, R. Hagiwara, H.

Sakaguchi, ACS Energy Lett., 2 (2017) 1139-1143.

[69] S. Kaushik, J. Hwang, K. Matsumoto, Y. Sato, R. Hagiwara, ChemElectroChem, 5 (2018)

1340-1344.

[70] C. Ding, T. Nohira, R. Hagiwara, J. Power Sources, 388 (2018) 19-24.

[71] M. Dahbi, M. Fukunishi, T. Horiba, N. Yabuuchi, S. Yasuno, S. Komaba, J. Power Sources,

363 (2017) 404-412.

[72] C.-H. Wang, C.-H. Yang, J.-K. Chang, Chem. Commun., 52 (2016) 10890-10893.

[73] S. Kaushik, K. Matsumoto, Y. Sato, R. Hagiwara, Electrochem. Commun., 102 (2019) 46-51.

[74] W. Jeitschko, P.C. Donohue, V. Johnson, Acta Crystallogr. Sect. B, 32 (1976) 1499-1505.

[75] M. Geolin, B. Carlsson, S. Rundqvist, Acta Chem. Scand. A, 29 (1975) 706-708.

[76] K. Selte, A. Kjekshus, A.F. Andresen, Acta Chem. Scand., 26 (1972) 4057-4062.

[77] J.-h. Yang, S.-h. Cheng, X. Wang, Z. Zhang, X.-r. Liu, G.-h. Tang, Trans. Nonferrous Met.

Soc. China, 16 (2006) s796-s803.

[78] C.E. Myers, H.F. Franzen, J.W. Anderegg, Inorg. Chem., 24 (1985) 1822-1824.

[79] H. Igarashi, K. Tsuji, T. Okuhara, M. Misono, J. Phys. Chem., 97 (1993) 7065-7071.

[80] P. Mezentzeff, Y. Lifshitz, J.W. Rabalais, Nucl. Instrum. Meth. B, 44 (1990) 296-301.

[81] J. Smajic, A. Alazmi, S.P. Patole, Pedro M.F.J. Costa, RSC Adv., 7 (2017) 39997-40004.

24

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

[82] S. Kaushik, K. Matsumoto, Y. Sato, R. Hagiwara, ChemElectroChem, 7 (2020) 2477-2484.

[83] L. Fransson, T. Eriksson, K. Edström, T. Gustafsson, J.O. Thomas, J. Power Sources, 101

(2001) 1-9.

[84] C.H. Chen, J. Liu, K. Amine, J. Power Sources, 96 (2001) 321-328.

[85] N. Ogihara, Y. Itou, T. Sasaki, Y. Takeuchi, J. Phys. Chem. C, 119 (2015) 4612-4619.

[86] J. Hwang, K. Matsumoto, R. Hagiwara, J. Phys. Chem. C, 122 (2018) 26857-26864.

[87] S.S. Zhang, K. Xu, T.R. Jow, Electrochim. Acta, 51 (2006) 1636-1640.

[88] J. Hwang, K. Takeuchi, K. Matsumoto, R. Hagiwara, J. Mater. Chem. A, 7 (2019) 2705727065.

[89] L. Ji, M. Gu, Y. Shao, X. Li, M.H. Engelhard, B.W. Arey, W. Wang, Z. Nie, J. Xiao, C. Wang,

J.-G. Zhang, J. Liu, Adv. Mater., 26 (2014) 2901-2908.

[90] E. Bekaert, J. Bernardi, S. Boyanov, L. Monconduit, M.L. Doublet, M. Ménétrier, J. Phys.

Chem. C, 112 (2008) 20481-20490.

[91] R. Morita, K. Gotoh, M. Dahbi, K. Kubota, S. Komaba, K. Tokiwa, S. Arabnejad, K.

Yamashita, K. Deguchi, S. Ohki, T. Shimizu, R. Laskowski, H. Ishida, J. Power Sources, 413 (2019)

418-424.

[92] L.E. Marbella, M.L. Evans, M.F. Groh, J. Nelson, K.J. Griffith, A.J. Morris, C.P. Grey, J. Am.

Chem. Soc., 140 (2018) 7994-8004.

25

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Tables and Figures

Table 1 Summary of ball-milling conditions and electrochemical performance of VxPy compounds

for NIBs and LIBs

VxPy/Li or Na

Electrochemical performancea

Ball-milling conditions

Speed

(rpm)

Time

(h)

Crystal system

(space group)

Ball:

powder

ratio (w/w)

20:1

1st cycle discharge

capacity (mAh g−1)

/ rate (mA g−1)

291/100

Electrolyte

VP/Li [42]

unknown

VP1.75@C/Li

[46]

300

60

20:1

tetragonal

(P−4m2)

882/100

LiPF6 in EC/DMC

VP1.75/Na [45]

300

60

20:1

tetragonal

(P−4m2)

240/50

NaClO4 in EC/DMC

with 5 vol% FEC

VP1.75-1.25P/Na

[73]

400

20

50:1

tetragonal

(P−4m2)

560/100

740/100*

600

50

10:1

monoclinic

(C2/m)

890/100

Na[FSA][C3C1pyrr][FSA] (2:8

mol ratio)

LiPF6 in EC/DMC

VP2/Li [44]

VP2/Na

(this work)

850

20

50:1

monoclinic

(C2/m)

49/100

243/100*

VP4/Li [43]

48

20:1

monoclinic

(C2/c)

1290/-

hexagonal

(P63/mnc)

aTemperature

bMolar

is 25°C unless specified with asterisk (90 °C for the one with asterisk)

concentration of electrolyte = 1 M unless specified; ratio of solvents = 1:1 v/v unless specified

26

LiPF6 in EC/DEC

Na[FSA][C3C1pyrr][FSA] (2:8

mol ratio)

LiPF6 in EC/DEC

023

−205

−504

020

400

−313

−203

−201

200

−202

110

001

Intensity

003

111

310

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

VP2

10

20

30 40 50 60

2 q / deg. (Cu-Ka)

70

80

Fig. 1 The XRD pattern of the pristine VP2 powder prepared by HEBM. The reference pattern of

VP2 is also shown for comparison [75].

27

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(a)

(c)

200 nm

(b)

(d)

(e)

0.25 nm

0.19 nm

10 nm

5 nm

Fig. 2 (a) SAED pattern, (b) HRTEM image, (c) STEM-EDX mapping, (d) magnified HRTEM

image, and (e) FFT power spectrum of the pristine VP2 powder.

28

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Voltage / V

2.0

1.5

1.0

2.5

Voltage / V

1st

2nd

3rd

(a)

0.5

1st

2nd

3rd

2.0

1.5

1.0

0.5

0.0

(c)

Charge

Discharge

400

300

200

100 mA g-1

100 200

500

1000

2000

4000

100

8000

0.0

8000

2.0

100

(d)

1.5

1.0

0.5

0.0

50 100 150 200 250

Capacity / mAh g

−1

100 200 300 400 500

Capacity / mAh g−1

300

10

20

30

100

250 (e)

90

200

Discharge capacity at 25 °C

Discharge capacity at 90 °C

Coulombic efficiency at 25 °C

Coulombic efficiency at 90 °C

150

100

80

70

60

50

100

200

300

Cycle number

40

Cycle number

400

Coulombic efficiency / %

100 200 300 400 500

Capacity / mAh g−1

Discharge capacity / mAh g−1

Voltage / V

500

(b)

Capacity / mAh g−1

2.5

50

500

Fig. 3 Electrochemical behavior of VP2 in a Na/VP2 coin-type cell with the IL electrolyte (cut-off

voltage: 0.005–2.0 V and counter electrode: Na metal disc). Galvanostatic charge-discharge curves

for the first three cycles at (a) 25 and (b) 90 °C (current density: 100 mAg−1). (c) Rate capability

at 90 °C (current density: 100–8000 mAg−1) and (d) galvanostatic charge-discharge curves of the

last cycle for each rate. (e) Cycleability for 500 cycles at 25 and 90 °C (rate: 100 mAg−1 for the

first three cycles to activate the electrode and 500 mA g−1 for the rest of cycles).

29

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(a)

2500

40

-Im (Z) / ohm

30

2000

20

13896 Hz

20615 Hz

10

1500

60

25 °C

60 °C

90 °C

50

10

20

30

40

(b)

50

1000

1st

3rd

10th

50th

100th

500th

50

-Im (Z) / ohm

3000

500

40

30

6396 Hz

20

10

38 Hz

20615 Hz

125 Hz

500 1000 1500 2000 2500 3000

Re (Z) / ohm

(c)

10

20 30 40

Re (Z) / ohm

50

60

CPE

CPE

R1

R2

R3

Fig. 4 (a) Nyquist plots of the VP2/VP2 symmetric cell using the IL electrolyte at 25, 60, and 90 °C.

The electrodes were charged in the Na/IL/VP2 half-cell configuration to the cell voltage of 0.5 V

and retrieved to prepare the symmetric cells. Inset shows the magnified view of the plots. (b)

Nyquist plot of the Na/VP2 half-cell using the IL electrolyte during 500 cycles at 90 °C. (c)

Equivalent circuit for fitting Nyquist plots in both symmetric cell and half-cell cases. All the EIS

tests were performed with an amplitude of 20 mV and frequency range of 100 kHz−10mHz.

30

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(b)

(a)

25 µm

25 µm

Fig. 5 SEM images of the VP2 electrode before and after cycling. (a) pristine electrode and (b)

after 500 cycles at 90 °C using the IL electrolyte.

31

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(a)

Al

(b)

Na3P

Current density

= 10 mA g−1

Pristine

Charged

Discharged

Current density

= 100 mA g−1

Intensity

Intensity

Al

VP2

Na3P

VP2

25 30 35 40 45 50 55 60 30 35 40 45 50 55 60

2 q / ° (Cu-Ka)

2 q / ° (Cu-Ka)

Fig. 6 Ex situ XRD patterns of the VP2 electrode before and after charge-discharge (pristine,

charged to 0.005 V, and discharged to 2.0 V). Current density: (a) 10 mA g−1 and (b) 100 mA g−1.

The reference patterns of VP2 and Na3P are shown for comparison [75, 91].

32

1.4

Fourier transformation magnitude

Normalized absorbance/ a.u.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(a)

1.2

1.0

Pristine

Charged 0.005 V

Discharged 2 V

0.8

0.6

0.4

0.2

0.0

5460

5480

5500

Energy / eV

5520

(b)

10

Pristine

Charged 0.005 V

Discharged 2 V

Interatomic distance (R) / Å

Fig. 7 XAFS analysis data of the VP2 electrode before and after charge-discharge (pristine, charged

to 0.005 V, and discharged to 2.0 V). (a) V K-edge XANES spectra, (b) Fourier transforms of the

V K-edge EXAFS oscillations. Charging-discharging current density = 100 mA g−1.

33

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(a)

VP2 (300–900 ppm)

POx

Discharged

Na3P (−208.7 ppm)

Charged

Pristine

1200

800

400

-400

P Chemical shift / ppm

-800

31

80% site occupancy P

Na

(b)

Na+

e−

VP2

VP2-x (x ~ 0.37)

xNa3P

Fig. 8 (a) 31P MAS NMR spectra of VP2 in pristine powder, charged (0.005 V) and discharged state

(2.0 V). The charging and discharging rates were 100 mA g−1. (b) Schematic representation of the

conversion reaction mechanism of VP2.

34

...

参考文献をもっと見る