リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Neutralizing antibody-dependent and -independent immune responses against SARS-CoV-2 in cynomolgus macaques.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Neutralizing antibody-dependent and -independent immune responses against SARS-CoV-2 in cynomolgus macaques.

ISHIGAKI Hirohito 90432301 NAKAYAMA Misako 00510306 KITAGAWA Yoshinori 00444448 NGUYEN Cong Thanh 0000-0002-5973-6210 HAYASHI Kaori 70569251 SHIOHARA Masanori GOTOH Bin 00211920 ITOH Yasushi 90324566 滋賀医科大学

2021.02

概要

We examined the pathogenicity of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in cynomolgus macaques for 28 days to establish an animal model of COVID-19 for the development of vaccines and antiviral drugs. Cynomolgus macaques infected with SARS-CoV-2 showed body temperature rises and X-ray radiographic pneumonia without life-threatening clinical signs of disease. A neutralizing antibody against SARS-CoV-2 and T-lymphocytes producing interferon (IFN)-γ specifically for SARS-CoV-2 N-protein were detected on day 14 in one of three macaques with viral pneumonia. In the other two macaques, in which a neutralizing antibody was not detected, T-lymphocytes producing IFN-γ specifically for SARS-CoV-2 N protein increased on day 7 to day 14, suggesting that not only a neutralizing antibody but also cellular immunity has a role in the elimination of SARS-CoV-2. Thus, because of similar symptoms to approximately 80% of patients, cynomolgus macaques are appropriate to extrapolate the efficacy of vaccines and antiviral drugs for humans.

この論文で使われている画像

関連論文

参考文献

Arikata, M., Itoh, Y., Okamatsu, M., Maeda, T., Shiina, T., Tanaka, K., et al., 2012. Memory immune responses against pandemic (H1N1) 2009 influenza virus induced by a whole particle vaccine in cynomolgus monkeys carrying Mafa-A1*052:02. PloS One 7 (5), e37220. https://doi.org/10.1371/journal.pone.0037220.

Arikata, M., Itoh, Y., Shichinohe, S., Nakayama, M., Ishigaki, H., Kinoshita, T., et al., 2019. Efficacy of clarithromycin against H5N1 and H7N9 avian influenza a virus infection in cynomolgus monkeys. Antivir. Res. 171, 104591. https://doi.org/ 10.1016/j.antiviral.2019.104591.

Bao, L., Deng, W., Huang, B., Gao, H., Liu, J., Ren, L., et al., 2020. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 583 (7818), 830–833. https://doi. org/10.1038/s41586-020-2312-y.

Chan, J.F., Zhang, A.J., Yuan, S., Poon, V.K., Chan, C.C., Lee, A.C., et al., 2020. Simulation of the clinical and pathological manifestations of Coronavirus Disease 2019 (COVID-19) in golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin. Infect. Dis. 71 (9), 2428–2446. https://doi. org/10.1093/cid/ciaa325.

Cleary, S.J., Pitchford, S.C., Amison, R.T., Carrington, R., Robaina Cabrera, C.L., Magnen, M., et al., 2020. Animal models of mechanisms of SARS-CoV-2 infection and COVID-19 pathology. Br. J. Pharmacol. 177 (21), 4851–4865. https://doi.org/ 10.1111/bph.15143.

Deng, W., Bao, L., Liu, J., Xiao, C., Liu, J., Xue, J., et al., 2020. Primary exposure to SARS- CoV-2 protects against reinfection in rhesus macaques. Science 369 (6505), 818–823. https://doi.org/10.1126/science.abc5343.

Guan, W.J., Ni, Z.Y., Hu, Y., Liang, W.H., Ou, C.Q., He, J.X., et al., 2020. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 382 (18), 1708–1720. https://doi.org/10.1056/NEJMoa2002032.

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., et al., 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395 (10223), 497–506. https://doi.org/10.1016/s0140-6736(20)30183-5.

Imai, M., Iwatsuki-Horimoto, K., Hatta, M., Loeber, S., Halfmann, P.J., Nakajima, N., et al., 2020. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc. Natl. Acad. Sci. U. S. A. 117 (28), 16587–16595. https://doi.org/10.1073/pnas.2009799117.

Itoh, Y., Shinya, K., Kiso, M., Watanabe, T., Sakoda, Y., Hatta, M., et al., 2009. In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. Nature 460 (7258), 1021–1025. https://doi.org/10.1038/nature08260.

Itoh, Y., Shichinohe, S., Nakayama, M., Igarashi, M., Ishii, A., Ishigaki, H., et al., 2015. Emergence of H7N9 influenza A virus resistant to neuraminidase inhibitors in nonhuman primates. Antimicrob. Agents Chemother. 59 (8), 4962–4973. https:// doi.org/10.1128/AAC.00793-15.

Kitano, M., Itoh, Y., Kodama, M., Ishigaki, H., Nakayama, M., Nagata, T., Ishida, H., Tsuchiya, H., Torii, R., Baba, K., Yoshida, R., Sato, A., Ogasawara, K., 2010. Establishment of a cynomolgus macaque model of influenza B virus infection. Virology 407, 178–184. https://doi.org/10.1016/j.virol.2010.08.006.

Kitano, M., Itoh, Y., Ishigaki, H., Nakayama, M., Ishida, H., Pham, V.L., et al., 2014. Efficacy of repeated intravenous administration of peramivir against highly pathogenic avian influenza A (H5N1) virus in cynomolgus macaques. Antimicrob. Agents Chemother. 58 (8), 4795–4803. https://doi.org/10.1128/AAC.02817-14.

Liu, L., Wei, Q., Alvarez, X., Wang, H., Du, Y., Zhu, H., et al., 2011. Epithelial cells lining salivary gland ducts are early target cells of severe acute respiratory syndrome coronavirus infection in the upper respiratory tracts of rhesus macaques. J. Virol. 85 (8), 4025–4030. https://doi.org/10.1128/jvi.02292-10.

Matsuyama, S., Nao, N., Shirato, K., Kawase, M., Saito, S., Takayama, I., et al., 2020. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc. Natl. Acad. Sci. U. S. A. 117 (13), 7001–7003. https://doi.org/10.1073/pnas.2002589117.

Munster, V.J., Feldmann, F., Williamson, B.N., van Doremalen, N., P´erez-P´erez, L., Schulz, J., et al., 2020. Respiratory disease in rhesus macaques inoculated with SARS-CoV-2. Nature 585 (7824), 268–272. https://doi.org/10.1038/s41586-020-2324-7.

Muramoto, Y., Shoemaker, J.E., Le, M.Q., Itoh, Y., Tamura, D., Sakai-Tagawa, Y., et al., 2014. Disease severity is associated with differential gene expression at the early and late phases of infection in nonhuman primates infected with different H5N1 highly pathogenic avian influenza viruses. J. Virol. 88 (16), 8981–8997. https://doi.org/ 10.1128/jvi.00907-14.

Nakayama, M., Shichinohe, S., Itoh, Y., Ishigaki, H., Kitano, M., Arikata, M., et al., 2013. Protection against H5N1 highly pathogenic avian and pandemic (H1N1) 2009 influenza virus infection in cynomolgus monkeys by an inactivated H5N1 whole particle vaccine. PloS One 8 (12), e82740. https://doi.org/10.1371/journal. pone.0082740.

Nguyen, C.T., Suzuki, S., Itoh, Y., Ishigaki, H., Nakayama, M., Hayashi, K., et al., 2020. Efficacy of neuraminidase inhibitors against H5N6 highly pathogenic avian influenza virus in a nonhuman primate model. Antimicrob. Agents Chemother. 64 (7) https://doi.org/10.1128/aac.02561-19 e02561-19.

Qu, J., Wu, C., Li, X., Zhang, G., Jiang, Z., Li, X., et al., 2020. Profile of IgG and IgM antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis. 71 (16), 2255–2258. https://doi.org/10.1093/cid/ciaa489.

Rambaut, A., Holmes, E.C., O’Toole A´, Hill, V., McCrone, J.T., Ruis, C., et al., 2020. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol 5 (11), 1403–1407. https://doi.org/10.1038/s41564-020-0770-5.

Rockx, B., Kuiken, T., Herfst, S., Bestebroer, T., Lamers, M.M., Oude Munnink, B.B., et al., 2020. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science 368 (6494), 1012–1015. https://doi.org/10.1126/science. abb7314.

Sette, A., Crotty, S., 2020. Pre-existing immunity to SARS-CoV-2: the knowns and unknowns. Nat. Rev. Immunol. 20 (8), 457–458. https://doi.org/10.1038/s41577- 020-0389-z.

Shen, L., Wang, C., Zhao, J., Tang, X., Shen, Y., Lu, M., et al., 2020. Delayed specific IgM antibody responses observed among COVID-19 patients with severe progression. Emerg. Microb. Infect. 9 (1), 1096–1101. https://doi.org/10.1080/22221751.2020.1766382.

Shi, D., Wu, W., Wang, Q., Xu, K., Xie, J., Wu, J., et al., 2020. Clinical characteristics and factors associated with long-term viral excretion in patients with SARS-CoV-2 infection: a single center 28-day study. J. Infect. Dis. 222 (6), 910–918. https://doi. org/10.1093/infdis/jiaa388.

Singh, S., Khan, A., 2020. Clinical characteristics and outcomes of coronavirus disease 2019 among patients with preexisting liver disease in the United States: a multicenter research network study. Gastroenterology 159 (2), 768–771. https:// doi.org/10.1053/j.gastro.2020.04.064.

Suzuki, S., Shichinohe, S., Itoh, Y., Nakayama, M., Ishigaki, H., Mori, Y., et al., 2020. Low replicative fitness of neuraminidase inhibitor-resistant H7N9 avian influenza a virus with R292K substitution in neuraminidase in cynomolgus macaques compared with I222T substitution. Antivir. Res. 178, 104790. https://doi.org/10.1016/j. antiviral.2020.104790.

Wang, F., Wang, H., Fan, J., Zhang, Y., Wang, H., Zhao, Q., 2020a. Pancreatic injury patterns in patients with coronavirus disease 19 pneumonia. Gastroenterology 159 (1), 367–370. https://doi.org/10.1053/j.gastro.2020.03.055.

Wang, Y., Zhang, L., Sang, L., Ye, F., Ruan, S., Zhong, B., et al., 2020b. Kinetics of viral load and antibody response in relation to COVID-19 severity. J. Clin. Invest. 130 (10), 5235–5244. https://doi.org/10.1172/jci138759.

Wichmann, D., Sperhake, J.P., Lütgehetmann, M., Steurer, S., Edler, C., Heinemann, A., et al., 2020. Autopsy findings and venous thromboembolism in patients with COVID-19. Ann. Intern. Med. 173 (4), 268–277. https://doi.org/10.7326/m20-2003. Wiersinga, W.J., Rhodes, A., Cheng, A.C., Peacock, S.J., Prescott, H.C., 2020. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. J. Am. Med. Assoc. 324 (8), 782–793. https://doi.org/ 10.1001/jama.2020.12839.

Williamson, B.N., Feldmann, F., Schwarz, B., Meade-White, K., Porter, D.P., Schulz, J., et al., 2020. Clinical benefit of remdesivir in rhesus macaques infected with SARS- CoV-2. Nature 585 (7824), 273–276. https://doi.org/10.1038/s41586-020-2423-5.

Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., et al., 2020. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 8 (4), 420–422. https://doi.org/10.1016/s2213-2600(20)30076-x.

Xu, J., Li, Y., Gan, F., Du, Y., Yao, Y., 2020. Salivary glands: potential reservoirs for COVID-19 asymptomatic infection. J. Dent. Res. 99 (8), 989. https://doi.org/ 10.1177/0022034520918518.

Yu, P., Qi, F., Xu, Y., Li, F., Liu, P., Liu, J., et al., 2020. Age-related rhesus macaque models of COVID-19. Animal Model Exp Med 3 (1), 93–97. https://doi.org/10.1002/ ame2.12108.

Zhang, J., Liu, P., Wang, M., Wang, J., Chen, J., Yuan, W., Li, M., et al., 2020. The clinical data from 19 critically ill patients with coronavirus disease 2019: a single-centered, retrospective, observational study. J. Public Health: From Theory to Practice 1–4. https://doi.org/10.1007/s10389-020-01291-2.

Zhao, J., Liao, X., Wang, H., Wei, L., Xing, M., Liu, L., et al., 2020. Early virus clearance and delayed antibody response in a case of COVID-19 with a history of co-infection with human immunodeficiency virus type 1 and hepatitis C virus. Clin. Infect. Dis. 71 (16), 2233–2235. https://doi.org/10.1093/cid/ciaa408.

Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., et al., 2020. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382 (8), 727–733. https://doi.org/10.1056/NEJMoa2001017.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る